

Page 1 of 4

NDI® SDK QUICK START GUIDE

7/25/2023

©2014-2023 NewTek Inc.

INTRODUCTION

This document is a very quick introduction to sending, receiving and enumerating NDI sources

on a network. The goal is to illustrate how few lines of code it takes to achieve these goals.

Obviously we ignore a lot of the advanced capabilities of the SDK in this document and we

would refer you to the SDK documentation for the full details. There is huge flexibility around

creating frames, using meta-data, controlling recording, PTZ cameras, video and audio formats

and much more. We hope however that this allows you to write just a few lines of code and

have video show up … and that gives you the taste of what is possible and tempt you into

learning more. Above all else we recommend that you have fun and be creative … that is why

NDI was created.

SENDING VIDEO OR AUDIO

We are going to write a very simple video sender that sends a single frame of video. We create

an NDI sender instance, although this can be configured manually we can also just allow the

SDK to choose all settings manually, so our next list would be:

NDIlib_send_instance_t my_ndi_send = NDIlib_send_create(nullptr);

If (!my_ndi_send) /* Failed to create sender */return false;

We are now going to send an HD frame of BGRA data that we already have rendered in

memory at a pointer p_bgra_frame. We now initialize a frame descriptor of the frame that is

going to be send with:

NDIlib_video_frame_v2_t video_frame_data;

video_frame_data.xres = xres;

video_frame_data.yres = yres;

video_frame_data.FourCC = NDIlib_FourCC_type_BGRA;

video_frame_data.p_data = p_bgra;

Please note that if you look at the definition of this structure you can specify the aspect ratio,

fielding mode, line strides, meta-data and much more, but when those capabilities are not

required they may simply be ignored.

You may now send this frame to NDI with a single call:

NDIlib_send_send_video(my_ndi_send, &video_frame_data);

Page 2 of 4

You can send as many frames as you want in this way, on a frame by frame basis you can

change any properties including resolution, color format, aspect ratio, etc… You do not need to

continually send video frames because NDI will buffer the last one itself in the NDI compressed

format so that it can be resent should anyone wish to connect to your NDI sender even when

you are not sending any frames. It is very similar to send audio buffers with the structure

NDIlib_audio_frame_v2_t that is sent with the function NDIlib_send_send_audio_v2.

One you wish to exit your application and no longer need the connection you may simply call

the destroy function.

NDIlib_send_destroy(my_ndi_send);

This is all that is needed to implement a simply sender and although there are many other

capabilities and features you can take advantage of, this would be an entirely correct application

that works fully.

FINDING SOURCES

In the previous example we described how to send video over NDI. In order to discover the list

of sources that are currently being sent onto the network you start by creating an NDI finder

instance as follows:

NDIlib_find_instance_t my_ndi_find = NDIlib_find_create_v2(nullptr);

If (!my_ndi_find) /* Failed to create finder */return false;

Like other NDI initializations you may pass additional parameters into the NDIlib_find_create_v2

function should you desire. Once you have a finder instance it will immediately start looking for

network sources; it might take a few seconds for it to find all of them but at any time you can

query it in order to get all the senders that it has found on the network:

uint32_t no_srcs; // This will contain how many senders have been found so far.

const NDIlib_source_t* p_senders = NDIlib_find_get_current_sources(my_ndi_find, &no_srcs);

p_senders is an array of length no_srcs that has all the sources found; for instance the third item

on the list could be accessed as p_senders[2]1. The lifetime of the p_senders pointer is valid until

the next call to NDIlib_find_get_current_sources or the finder is destroyed. Because sources on a

network do not all get detected at once and new sources might come online and existing

sources might go offline you can either repeat the call above each time you need the list, or you

can make the following call that allows you to sleep for some period of time until the list of

sources has changed.

bool source_list_has_changed = NDIlib_find_wait_for_sources(my_ndi_find, 2500/* 2.5 seconds */);

1 Remember that in C/C++ that an array is indexed from 0.

Page 3 of 4

Once you no longer want to keep up to date with the available sources on the network you can

simply destroy the finder with a call too.

NDIlib_find_destroy(my_ndi_find);

This is all that is needed to locate sources and know when the list of sources found has

changed. Once you have the list of sources that are available to you then you can use one of

these to receive video as described in the next section.

RECEIVING VIDEO AND AUDIO

In order to receive a source, the first step is to create a receiver. This can be achieved with:

NDIlib_recv_instance_t my_ndi_recv = NDIlib_recv_create_v3(nullptr);

If (!my_ndi_recv) /* Failed to create finder */return false;

You may pass parameters into NDIlib_recv_create_v3 that can specify what your preferred color

space is, whether you want fielded video and more if you wish.

Once you have a receiver, you should connect it to a network sender. You first create a

description of the source that you wish to connect too, assuming that you wish to connect to the

source “MIX 1” and is running on a computer named “My Computer”, this would be achieved

with the code

NDIlib_source_t my_source;

my_source.p_ndi_name = "My Computer (MIX 1)";

In practice, you would probably use the source returned by an NDI finder as described in the

previous section. With the source ready, you would simply initiate the connection with

NDIlib_recv_connect(my_ndi_recv, &my_source);

Note that even if this source does not currently exist on the network that NDI will successfully

initiate the process of connection and the moment that it becomes available it will then

immediately connect automatically. If a source disappears and re-appears then NDI will

automatically reconnect without you needing to have any code to initiate this. You may

reconnect to other sources on the receiver at any time.

Once the connection is ready you must initiate a loop that will receive messages that come from

the network, this is performed with a loop that receives frames until you no longer desire to get

any.

while(your_application_wants_to_receive())

{ NDIlib_video_frame_v2_t video_recv;

 NDIlib_audio_frame_v2_t audio_recv;

 switch(NDIlib_recv_capture_v2(my_ndi_recv, &video_recv, &audio_recv, nullptr, 1500))

 { case NDIlib_frame_type_video:

process_your_video(&video_recv);

NDIlib_recv_free_video_v2(my_ndi_recv, &video_recv);

break;

 case NDIlib_frame_type_audio:

process_your_audio(&audio_recv);

NDIlib_recv_free_audio_v2(my_ndi_recv, &audio_recv);

Page 4 of 4

break;

 } // switch

} // while

This loop will ask the SDK for a frame with a timeout of 1500 milliseconds (1.5 seconds) and if

there are any video, audio or meta-data frames queued up or which are received in this time the

descriptions will be placed in the relevant structure and the frame type received would be

returned. The structures refer to memory allocated when the frames are received and so you

must free this memory with the relevant free function. Frames are received and processed by

NDI on at least one separate thread that is part of the receiver, meaning that frames are not

dropped easily in this loop if your processing might not always return immediately. There is no

requirement to free the frames before you capture the next one, allowing a host application to

queue them or process them asynchronously on another thread2.

Once you are complete with the receiver you simply destroy it with

NDIlib_recv_destroy(pNDI_recv);

2 NDI receive calls are re-entrant so you are free to receive for instance audio and video on

separate threads, you may free the data on any threads if you place them on a queue and

process asynchronously.

