
Page 1 of 51

SDK VERSION 5.6

7/25/2023

© 2023 Vizrt NDI AB. All rights reserved.

Table of Contents

1 Overview ... 4

1.1 NDI Background ... 4

2 SDK Changes ... 4

3 Licensing ... 5

4 Software Distribution ... 6

4.1 Header files. (NDI_SDK_DIR\Include*.h) .. 6

4.2 Binary files (NDI_SDK_DIR\Bin*.*) ... 6

4.3 Redistributables (NDI_SDK_DIR\Redist*.exe) .. 6

4.4 Content Files (NDI_SDK_DIR\LOGOS*.*) .. 6

4.5 Libraries ... 6

4.5.1 NDI-Send ... 6

4.5.2 NDI-Find .. 6

4.5.3 NDI-Receive .. 7

4.6 Utilities ... 7

4.7 Command line tools ... 7

5 CPU Requirements .. 7

6 Dynamic Loading of NDI Libraries ... 7

6.1 Locating the Library ... 7

6.2 Recovering the Function Pointers .. 8

6.3 Calling NDI functions .. 8

7 Performance and Implementation ... 8

7.1 Upgrading Your Applications ... 8

7.2 General Recommendations ... 8

Page 2 of 51

7.3 Sending Video .. 8

7.4 Receiving VIdeo ... 9

7.5 Reliable UDP With Multi-Stream Congestion Control ... 9

7.6 Multicast .. 10

7.6.1 Debugging with multicast ... 10

8 Startup and Shutdown .. 11

9 Example Code ... 11

10 Port Numbers ... 11

11 Configuration Files .. 12

12 Platform Considerations ... 17

12.1 Windows .. 17

12.2 Windows UWP ... 17

12.3 macOS .. 18

12.4 Android .. 18

12.5 iOS .. 18

12.6 Linux ... 18

13 NDI-Send ... 19

13.1 Asynchronous Sending ... 22

13.2 Timecode synthesis.. 23

13.3 Failsafe ... 24

13.4 Capabilities .. 24

13.5 Apple iOS Notes ... 25

14 NDI-Find .. 25

15 NDI-Recv ... 27

15.1 Receiver User interfaces .. 31

15.2 Receiver PTZ Control .. 32

15.2.1 PTZ Control ... 32

15.3 Receivers and Tally Messages .. 34

15.4 Frame Synchronization .. 34

16 NDI-Routing .. 37

17 Command Line Tools .. 38

17.1 Recording ... 38

Page 3 of 51

17.1.1 Command Line Arguments ... 39

17.1.2 Input Settings .. 39

17.1.3 Output Settings ... 40

17.1.4 Error Handling ... 40

17.2 NDI Discovery Service .. 41

17.2.1 Server .. 41

17.2.2 Clients ... 42

17.2.3 Configuration .. 42

17.2.4 Redundancy and multiple servers .. 42

17.3 NDI Benchmark .. 42

18 Frame Types.. 43

18.1 Video Frames (NDIlib_video_frame_v2_t) .. 43

18.2 Audio Frames (NDIlib_audio_frame_v3_t) .. 47

18.3 Metadata Frames (NDIlib_metadata_frame_t) ... 49

19 Windows DirectShow Filter .. 50

20 3rd Party Rights .. 51

21 Support ... 51

Page 4 of 51

1 OVERVIEW

This SDK makes it easy to prepare products that share video on a local Ethernet network, and the countless

features and capabilities that have made NDI® by far the world’s most prolific broadcast video over IP protocol.

1.1 NDI BACKGROUND

When we first introduced NDI, we made the bold assertion that ‘the future of the video industry would be one in

which video is transferred easily and efficiently in ‘IP space’, and that this approach ‘would largely supplant current

industry-specific connection methods (HDMI, SDI, etc.) in the production pipeline’. By now, this breathtaking

transformation is far advanced, and hundreds of millions of users have countless NDI-enabled applications and

systems at their fingertips.

That a/v signals will predominantly be carried over IP is no longer in doubt, and vestigial contentions to the

contrary are largely being phased out. All modern video rendering, graphics systems and switchers run on

computers. Cameras and most other production devices use computer-based systems internally, too. Most of such

systems communicate via IP – and NDI is serving this purpose far more often than any other protocol.

NDI DOESN’T SIMPLY SUBSTITUTE NEWTORK CABLES FOR SDI CABLES – IT CHANGES EVERYTHING!

Handling video over networks opens a world of new creative and pipeline possibilities. Consider a comparison:

The Internet, too, could be narrowly described as a transport medium, moving data from point A to point B. Yet,

by connecting everyone and everything everywhere together, it is much more than the sum of its parts. Likewise,

introducing video into the IP realm with virtually endless potential connections delivers exciting creative new

possibilities and ever-expanding workflow benefits.

NDI allows multiple video systems to identify

and communicate with one another over

IP, and to encode, transmit and receive

many streams of very high quality, low

latency, frame-accurate video, and audio

in real time.

NDI supports many video streams on a

shared local network connection and

can operate bi-directionally. Its encoding

algorithm is resolution and framerate

independent, supports 4K and beyond, along

with 16 channels and more of floating-point audio and 16-bit video.

NDI also includes tools to implement video access rights, grouping, bi-directional metadata, IP commands, routing,

discovery servers and more. Its superb performance over standard GigE networks make it possible to transition

facilities to an incredibly versatile IP video production pipeline without negating existing investments in SDI

cameras and infrastructure or requiring costly new high-speed network infrastructures.

Wide distribution within a facility becomes a simple, versatile, and economical reality. And NDI also revolutionizes

ingest and post-production by making fully time-synced capture on a massive scale a reality.

2 SDK CHANGES

Change notes are provided in an Appendix at the end of this manual.

Page 5 of 51

3 LICENSING

You may use this SDK in accordance with its License Agreement, which is available for review in the root level of

the SDK folder. Your use of any part of the SDK for any purpose is acknowledgment that you agree to these license

terms. For distribution, you must implement this SDK within your applications respecting the following

requirements:

• You may use the NDI library within free or commercial Products (as defined by License) created using this SDK

without paying any license fees.

• Your application must provide a link to https://ndi.video/ in a location close to all locations where NDI is used

/ selected within the product, on your web site, and in its documentation. This link will point to a landing page

that provides information about NDI and access to the tools we provide, along with updates and news.

• You may not distribute the NDI tools; if you wish to make these accessible to your users you may provide a link

to https://ndi.video/tools/.

• NDI is a registered trademark of Vizrt NDI AB and should be used only with the ® as follows: NDI®, along with

the statement “NDI® is a registered trademark of Vizrt NDI AB” located on the same page near the mark where

it is first used, or at the bottom of the page in footnotes. You are required to use the registered trademark

designation only on the first use of the word NDI within a single document.

• Your application’s About Box and any other locations where trademark attribution is provided should also

specifically indicate that “NDI® is a registered trademark of Vizrt NDI AB”. If you have questions, please do let

us know.

Note that if you wish to use “NDI” within the name of your product then you should carefully read the NDI brand

guidelines or reach out to the NDI team.

• You should include the NDI DLLs as part of your own application and keep them in your application folders so

that there is no chance that NDI DLLs installed by your application might conflict with other applications on

the system that also use NDI. Please do not install your NDI DLLs into the system path for this reason. If you

are distributing the NDI DLLs you need to ensure that your application complies with the License Agreement,

this section and the license terms outlined in “3rd party rights” towards the end of this manual.

• If you are using the FREE NDI SDK on Android then you may build products for mobile devices that may be sold

on the online Android stores, for other uses please email sdk@ndi.video.

• The NDI Advanced SDK is provided to allow anyone to develop products against NDI and to develop without

any charge. To use the Advanced SDK in a commercial product or environment you should contact

licensing@ndi.video to receive a vendor ID for your company.

We are very interested in how our technology is being used and would like to maintain a full list of applications

using NDI technology. Please let us know about your commercial application (or interesting non-commercial one)

using NDI by telling us on our NDI SDK support hub at https://ndi.video/resources/get-in-touch/. If you have any

questions, comments, or requests, please do not hesitate to let us know. Our goal is to provide you with this

technology and encourage its use, while ensuring that both end-users and developers enjoy a consistent high-

quality experience.

NOTE: Because AAC, H.264, and H.265 are formats that potentially are not license free, it is your responsibility to

ensure that these are correctly licensed for your product if you are using these with this SDK.

https://ndi.video/
https://ndi.video/tools/
https://ndi.video/resources/get-in-touch/
mailto:sdk@ndi.video
mailto:licensing@ndi.video
https://ndi.video/resources/get-in-touch/

Page 6 of 51

4 SOFTWARE DISTRIBUTION

To clarify which files may be distributed with your applications, the following are the files and the distribution

terms under which they may be used for the SDK.

Note that open-source projects have the right to include the header files within their distributions, which may then

be used with dynamic loading of the NDI libraries.

4.1 HEADER FILES. (NDI_SDK_DIR \INCLUDE*.H)

These files may be distributed with open-source projects under the terms of the MIT license and may be included

in open-source projects (see “Dynamic Loading” section for preferred mechanism). However, the requirements of

these projects in terms of visual identification of NDI shall be as outlined within the License section above.

4.2 BINARY FILES (NDI_SDK_DIR\BIN*.*)

You may distribute these files within your application if your EULA terms cover the specific requirements of the

NDI SDK EULA, and your application covers the terms of the License section above.

4.3 REDISTRIBUTABLES (NDI_SDK_DIR\REDIST*.EXE)

You may distribute the NDI redistributable and install them within your own installer. However, you must make all

reasonable effort to keep the versions you distribute up to date. You may use the command line with

/verysilent to install without any user intervention, but if you do then you must ensure that the terms of the NDI

license agreement are fully covered elsewhere in your application.

An alternative is to provide a user link to the NDI provided download of this application at

http://ndi.link/NDIRedistV5. At runtime, the location of the NDI runtime DLLs can be determined from the

environment variable NDI_RUNTIME_DIR_V5.

4.4 CONTENT FILES (NDI_SDK_DIR\LOGOS*.*)

You may distribute all files in this folder as you need and use them in any marketing, product, or web material.

Please refer to the guidelines within the “NDI Brand Guidelines” which are included within this folder.

4.5 LIBRARIES

Components included in the SDK provide support for finding (find), receiving (recv), and sending (send). These

share common structures and conventions to facilitate development and may all be used together.

4.5.1 NDI-SEND

This is used to send video, audio, and metadata over the network. You establish yourself as a named source on the

network, and then anyone may see and use the media that you are providing.

Video can be sent at any resolution and framerate in RGB(+A) and YCbCr color spaces, and any number of receivers

can connect to an individual NDI-Send.

4.5.2 NDI-FIND

This is used to locate all of the sources on the local network that are serving media capabilities for use with NDI.

http://ndi.link/NDIRedistV5

Page 7 of 51

4.5.3 NDI-RECEIVE

This allows you to take sources on the network and receive them. The SDK internally includes all the requisite

codecs and handles all the complexities of reliably receiving high-performance network video.

4.6 UTILITIES

To make the library easy to use, the SDK includes several utilities that can be used to convert between common

formats. For instance, conversion between different audio formats is provided as a service.

4.7 COMMAND LINE TOOLS

There are also several important command line tools within the SDK, including a discovery server implementation,

and a command line application that can be used for recording.

5 CPU REQUIREMENTS

NDI Lib is heavily optimized (much of it is written in assembly). While it detects available architecture and uses the

best path it can, the minimum required SIMD level is SSSE3 (introduced by Intel in 2005). The NDI library running

on ARM platforms requires NEON support. To the degree possible, hardware acceleration of streams uses GPU-

based fixed function pipelines for decompression and is supported on Windows, macOS, iOS, tvOS platforms; all

GPUs on these platforms are supported with special case optimized support for Intel QuickSync and nVidia.

However, this is not required, and we will always fall back to software-based compression and decompression.

6 DYNAMIC LOADING OF NDI LIBRARIES

At times you might prefer not to link directly against the NDI libraries, loading them dynamically at run time

instead. This can be of value in Open-Source projects.

There is a structure that contains all the NDI entry points for a particular SDK version; calling a single-entry point in

the library will recover all these functions. The basic procedure is relatively simple, and an example is provided

with the SDK.

6.1 LOCATING THE LIBRARY

You can of course include the NDI runtime within your application folder. Alternatively, on Windows you can

install the NDI runtime and use an environment variable to locate it on disk. If you are unable to locate the library

on disk, you may ask users to perform a download from a standardized URL. System dependent #defines are

provided to make this a simple process:

• NDILIB_LIBRARY_NAME is a C #define to represent the dynamic library name (as, for example, the dynamic

library Processing.NDI.Lib.x64.dll).

• NDILIB_REDIST_FOLDER is a C #define variable that references an environment variable to the installed NDI

runtime library (for example, C:\Program Files\NDI\NDI 5 Runtime\).

• NDILIB_REDIST_URL is a C #define for a URL where the redistributable for your platform may be downloaded

(for example, http://ndi.link/NDIRedistV5).

On the Mac, it is not possible to specify global environment variables and so there is no standard way for the

application to specify a path. For this reason, the redistributable on MacOS is installed within /usr/local/lib.

It is our intent to make the process of cross platform loading of the run-times easier for the next version of NDI.

http://ndi.link/NDIRedistV5

Page 8 of 51

6.2 RECOVERING THE FUNCTION POINTERS

Once you have located the library, you can look for a single exported function NDIlib_v5_load(). This function

returns a structure of type NDIlib_v5 that gives you a reference to every NDI function.

6.3 CALLING NDI FUNCTIONS

Once you have a pointer to NDIlib_v5, you can replace every function with a simple new reference. For instance,

to initialize a sender you can replace a call to NDIlib_find_create_v2 in the following way:

NDIlib_find_create_v2(...) becomes p_NDILib->NDIlib_find_create_v2(...)

7 PERFORMANCE AND IMPLEMENTATION

This section provides some guidelines on how to get the best performance out of the SDK.

7.1 UPGRADING YOUR APPLICATIONS

The libraries (DLLs) for the latest version of NDI should be entirely backwards compatible with NDI v4 and, to the

degree possible, even earlier versions. In many cases you should be able to simply update these in your

application to get most of the benefits of the new version – without a single code change.

Note: There are several exceptions to the statement above, however. If you have software that was built before

NDI version 4.5, on macOS and Linux applications for NDI v4.5 you will need to recompile your applications; this

change was made because the size of some struct members changed.

7.2 GENERAL RECOMMENDATIONS

• Throughout the system, use YCbCr color, if possible, as it offers both higher performance and better quality.

• If your system has more than one NIC and you are using more than a few senders and receivers, it is worth

connecting all available ports to the network. Bandwidth will be distributed across multiple network adapters.

• Use the latest version of the SDK whenever possible. Naturally, the experience of huge numbers of NDI users

in the field provides numerous minor edge-cases, and we work hard to resolve all of these as quickly as

possible.

• As well, we have ambitious plans for the future of NDI and IP video, and we are continually laying groundwork

for these in each new version so that these will already be in place when the related enhancements become

available for public use.

• The SDK is designed to take advantage of the latest CPU instructions available, particularly AVX2 (256-bit

instructions) on Intel platforms and NEON instructions on ARM platforms. Generally, NDI speed limitations

relate more to system memory bandwidth than CPU processing performance since the code is designed to

keep all execution pipelines on a CPU busy.

• NDI takes advantage of multiple CPU cores when decoding and encoding one or more streams, and for higher

resolutions will use multiple cores to decode a single stream.

7.3 SENDING VIDEO

• Use UYVY or UYVA color, if possible, as this avoids internal color conversions. If you cannot generate these

color formats and you would use the CPU to perform the conversion, it is better to let the SDK perform the

conversion.

Page 9 of 51

• Doing so yields performance benefits in most cases, particularly when using asynchronous frame submission.

If the data that you are sending to NDI is on the GPU, and you can have the GPU perform the color conversion

before download to system memory, you are likely to find that this has the best performance.

• Sending BGRA or BGRX video will incur a performance penalty. This is caused by the increased memory

bandwidth required for these formats, and the conversion to YCbCr color space for compression. With that

said, performance was significantly improved in version 4 of the NDI SDK.

• Using asynchronous frame submission almost always yields significant performance benefits.

7.4 RECEIVING VIDEO

• Using NDIlib_recv_color_format_fastest for receiving will yield the best performance.

• Having separate threads query for audio and video via NDIlib_recv_capture_v3 is recommended.

Note that NDIlib_recv_capture_v3 is multi-thread safe, allowing multiple threads to be waiting for data at once.

Using a reasonable timeout on NDIlib_recv_capture_v3 is better and more efficient than polling it with zero

time-outs.

• In the modern versions of NDI there are internal heuristics that attempt to guess whether hardware

acceleration would enable better performance. With this said, it is possible to explicitly enable hardware

acceleration if you believe that it would be beneficial for your application. This can be enabled by sending an

XML metadata message to a receiver as follows:

<ndi_video_codec type="hardware"/>

• Bear in mind in that decoding resources on some machines are designed for processing a single video stream.

In consequence, while hardware assistance might benefit some small number of streams, it may hurt

performance as the number of streams increases.

• Modern versions of NDI almost certainly already default to using hardware acceleration in most situations

where it would be beneficial and so these settings are not likely to make a significant improvement. In earlier

versions concerns around hardware codec driver stability made us less likely to enable these by default, but

we believe that this caution is no longer needed.

7.5 RELIABLE UDP WITH MULTI -STREAM CONGESTION CONTROL

In NDI version 5 the default communication mechanism is a reliable UDP protocol that represents the state-of-the-

art communication protocol that is implemented by building upon all our experience we have seen in the real

world with NDI across a massive variety of different installations. By using UDP it does not rely on any direct round-

trip, congestion control or flow control issues that are typically associated with TCP. Most importantly, our

observation has been that on real world networks, as you approach the total bandwidth available across many

different channels of video, the management of the network of bandwidth becomes the most common problem.

Our reliable UDP solves this by moving all streams between sources into a single connection across which the

congestion control is applied in aggregate to all streams at once which represents a massive improvement in

almost all installations. These streams are all entirely non-blocking with each-other so that even under high packet

loss situations there is no possibility of a particular loss impacting any other portions of the connection.

One of the biggest problems with UDP packet sending is that by needing to send many small packets onto the

network that one results in a very large OS kernel overhead. Our implementation works around this by supporting

fully asynchronous sending of many packets at once and supporting packet coalescing on the receiving side to

allow the kernel and network card driver to offload a huge fraction of the processing.

Page 10 of 51

This protocol also supports high network latencies by having the current best published congestion control

systems. This allows many packets to be in flight at a time and very accurately track which packets have been

received and adjust the number to the current measured round-trip time.

On Windows where this is supported, receiver side scaling is used to achieve much optimized network receiving

that ensures that as the network card interrupts are received that they are always handed off directly to a thread

that has an execution context available (which are then directly passed into the NDI processing chain).

For the absolute best performance reliable-UDP supports UDP Segmentation Offload (USO) which allows network

interface cards to offload the segmentation of UDP datagrams that are larger than the maximum transmission unit

(MTU) of the network medium which can significantly reduce CPU usage.

On Linux, to get the best performance we need to take advantage of Generic Segmentation Offload (GSO) for UDP

sending, which might also be referred to as UDP_SEGMENT which was made available in Linux Kernel 4.18.

Without this, UDP sending can see significantly increased CPU overhead.

7.6 MULTICAST

NDI supports multicast-based video sources using multicast UDP with forwards error correction to correct for

packet loss.

It is important to be aware that using multicast on a network that is not configured correctly is very similar to a

“denial of service” attack on the entire network; for this reason, multicast sending is disabled by default.

Every router that we have tested has treated multicast traffic as if it was broadcast traffic by default. Because

most multicast traffic on a network is low bandwidth, this is of little consequence, and generally allows a network

router to run more efficiently because no packet filtering is required.

What this means, though, is that every multicast packet received is sent to every destination on the network,

regardless of whether it was needed there or not. Because NDI requires high bandwidth multicast, even with a

limited number of sources on a large network, the burden of sending this much data to all network sources can

cripple the entire network’s performance.

To avoid this serious problem, it is essential to ensure that every router on the network has proper multicast

filtering enabled. This option is most referred to as “IGMP snooping”. This topic is described in detail at

https://en.wikipedia.org/wiki/IGMP_snooping. If you are unable to find a way to enable this option, we

recommend that you use multicast NDI with all due caution.

7.6.1 DEBUGGING WITH MULTICAST

Another important cautionary note is that a software application like NDI will subscribe to a multicast group and

will unsubscribe from it when it no longer needs that group.

Unlike most operations in the operating system, the un-subscription step is not automated by the OS; once you are

subscribed to a group, your computer will continue to receive data until the router sends an IGMP query to verify

whether it is still needed. This happens about every 5 minutes on typical networks.

The result is that if you launch an NDI multicast stream and kill your application without closing the NDI connection

correctly, your computer will continue to receive the data from the network until this timeout expires.

https://en.wikipedia.org/wiki/IGMP_snooping

Page 11 of 51

8 STARTUP AND SHUTDOWN

The functions NDIlib_initialize and NDIlib_destroy can be called to initialize or de-initialize the library.

Although never absolutely required, it is recommended that you call these. (Internally all objects are reference-

counted; the libraries are initialized on the first object creation and destroyed on the last, so these calls are

invoked implicitly.)

In the latest version of NDI on platforms where the application has permissions it will attempt to configure the

firewall settings for the application to allow it to perform video communication over NDI.

The only negative side-effect of this behavior is that more work will be done than is required if you repeatedly

create and destroy a single object. These calls allow that to be avoided. There is no scenario under which these

calls can cause a problem, even if you call NDIlib_destroy while you still have active objects. NDIlib_initialize

will return false on an unsupported CPU.

9 EXAMPLE CODE

The NDI SDK includes many examples to help you get going, including examples that show sending, receiving of

data, finding sources, use of 10-bit video, and many more. We recommend that you look closely at these since

they provide good, simple illustrations of many possible SDK use cases.

10 PORT NUMBERS

Each NDI connection will require one more port number. Current versions try for these to be in a predictable port

range, although if some of this range is taken by other applications it might need to use higher numbers. The

following table describes the used port numbers, their types, and their purpose.

It is recommended that you use the connection types that are default for the current version of NDI since these

represent the best recommendations that we have tested and observed to yield the best performance in the field.

Earlier versions of NDI might use ports in the ephemeral range, although modern versions of NDI no longer use

these to ensure that the port numbers are more predictable and easier to configure in

Port

Number

Type Use NDI Version

5353 UDP This is the standard port used for mDNS communication and is

always used for multicast sending of the current sources onto the

network.

NDI Version 5

Page 12 of 51

5960 and up UDP When using reliable UDP connections it will use a very small number

of ports in the range of 5960 for UDP. These port numbers are

shared with the TCP connections. Because connection sharing is

used in this mode, the number of ports required is very limited and

only one port is needed per NDI process running and not one port

per NDI connection.

NDI Version 5

5960 TCP This is a TCP port used for remote sources to query this machine

and discover all the sources running on it. This is used for instance

when a machine is added by IP address in the access manager so

that from an IP address alone all the sources currently running on

that machine can be discovered automatically.

NDI Version 5

5961 and up TCP These are the base TCP connection used for each NDI stream. For

each current connection, at least one port number will be used in

this range.

NDI Version 4

6960 and up TCP/UDP When using multi-TCP or UDP receiving, at least one port number in

this range will be used for each connection.

NDI Version 4

7960 and up TCP/UDP When using multi-TCP, unicast UDP, or multicast UDP sending, at

least one port number in this range will be used for each

connection.

NDI Version 4

11 CONFIGURATION FILES

The NDI configuration settings are stored in JSON files. The location of these files varies per platform and are

described in the next section of the manual.

Please note that when using the Advanced NDI SDK that all settings are per instance and so entirely separate

settings may be used for every finder, sender, and receiver; this is incredibly powerful by allowing you to specify per

sender or receiver which NICs are used, formats are used, what the machine name is, etc…

Please pay extra attention to the value types, as it is important that these matches what is listed here (e.g., true

rather than “true”). Also please note that all these parameters have default values that are the recommended best

configuration for most machines, we only suggest you change these values if there is a very specific need for your

installation.

{
 "ndi": {
 "machinename": "Hello World",

This is an option that allows you to change how your

machine is identified on the network using NDI, over-

riding the local name of the machine. This option should

be used with very great care since a clash of machine

names on the network is incompatible with mDNS and

can cause all other sources to not work correctly. When

using this it is essential to ensure that all machine

Page 13 of 51

names on the network are unique. We recommend that

avoiding using this parameter when at all possible.

 "send": {
 "metadata": "<My very cool source/>"
 },

In version 5 of NDI, it is possible to specify metadata for

the current source when creating an NDI sender with

the Advanced SDK. When using the NDI finder, it is then

possible to receive this metadata in order to receive any

number of properties about the source. Please note

that you should always make your meta-data in XML

format and be careful to correctly escape it when

adding it into the JSON configuration file.

 "networks": {
 "ips": "192.168.86.32,",
 "discovery": "127.0.0.1,127.0.0.1"
 },

These are extra IP addresses for machines from which

you wish to discover NDI sources. Each local machine

runs a service on port 5960, which is then connected to

by the machine this configuration is run on. This allows

sources to be discovered on those IP addresses without

needing mDNS to discover it.

Hint: When a Discovery server is used, receivers

combine the list of sources found on the discovery

server with those discovered via mDNS. Senders

however will avoid using mDNS when a discovery server

is configured allowing you to run entirely without

network multicast if you desire.

Starting in NDI version 5 it is possible to use a comma

delimited list of discovery servers for full support for

redundancy. For more information, please review the

section of the manual regarding the discovery server.

The discovery server list may include port numbers if

you do not with the default port of 5959 to be used.

 "groups": {
 "send": "Public",
 "recv": "Public"
 },

This is the list of groups that the senders on this system

are going to be part of by default. If groups are not

specified, senders will be part of the public group by

default.

 " sourcefilter": {
 "regex": "MACHINE .*"
 },

In NDI version 5, there is the ability to specify a regular

expression that will be used to further filter the set of

sources that will be visible to NDI finders. This is an

advanced option that allows you to specify exactly

which sources are going to be visible to the local

machine. If your regular expression is not valid, then it

Page 14 of 51

will not be applied.

 "adapters": {
 "allowed": ["10.28.2.10","10.28.2.11"]
 },

Starting in NDI version 5, this lists all the network

adapters that will be used for network transmission.

One or more NICs can be used for transmission and

receipt of video and audio data. This capability can be

used to ensure that the NDI primary stream data

remains on group of network adapters, for instance

allowing you to ensure that dedicated audio is on a

separate network card from the NDI video.

It is generally preferred that you let NDI select the

network adapters automatically which can smartly

select which to use and how to choose the ones that

result in the best bandwidth. While in some modes NDI

can automatically balance bandwidth across multiple

NICs it is normally better for you to use NIC teaming at

a machine configuration level which can result in much

better performance than what is possible in software.

If this setting is configured incorrectly to specify NICs

that might not exist, then NDI might fail to function

correctly. Also please note that the operation of

computer systems that are separately on entirely

different networks with different IP address ranges is

often not handled robustly by the operating system and

NDI might not fully function in these configurations.

 "rudp": {
 "send": {
 "enable": true
 },
 "recv": {
 "enable": true
 }
 },

The following connections are available in NDI version 5

and allow the force enabling and disabling of the

reliable UDP mode which is the default connection type

on NDI version 5 and later. The full details of this

connection type are described in the section for

“Performance and Implementations” section of this

manual.

There are separate settings for sending and receiving.

Both sides need to allow this mode to be applied;

sources and receivers have it enabled by default.

This is the default connection type and represents the

preferred type for most network configurations and we

recommend it’s use where possible.

 "multicast": {
 "send": {
 "ttl": 1,
 "enable": false,

These settings enable or disable the use of multicast for

receiving. If you explicitly disable it on a machine then,

Page 15 of 51

 "netmask": "255.255.0.0",
 "netprefix": "239.255.0.0"
 },
 "recv": {
 "enable": true
 }
 },

even if the sender is configured for multicast, it will use

unicast. When multicast receiving is enabled and a

sender is available in the same local network, the

receiver can negotiate for a multicast stream to be sent.

If the sender is not on the same local network, this

negotiation does not occur (since it could lead to a

multicast stream being sent but never able to arrive at

the receiver). If you have a correctly configured

network and can ensure a multicast stream can route

reliably from a different network to the receiver’s local

network, you can specify the sender’s subnet in the

“subnets” setting to allow multicast negotiation to

occur.

These settings pertain to multicast NDI setting on this

machine. The first setting determines whether multicast

sending is enabled or not. By default, multicast sending

is disabled. Next is the IP address prefix and mask. In

this example, multicast IP addresses will be chosen in

the range 239.255.0.0 - 239.255.255.255. NDI will

attempt to use different multicast addresses to ensure

that the streams can be filtered efficiently by the

network adapter. NDI senders need a range of multicast

addresses available. The TTL value controls how many

“hops” the multicast sending traffic will take, allowing it

to move outside of the local network.

There are separate settings for sending and receiving.

Both sides need to allow this mode to be applied;

sources and receivers have it enabled by default.

We generally discourage the use of Multicast since

configuration and ensuring that high performance is

achieved is very difficult at a network level in most

cases the default protocols (particularly reliable UDP)

perform much better.

 "tcp": {
 "send": {
 "enable": false
 },
 "recv": {
 "enable": false
 }
 },

These settings enable or disable multi-TCP sending or

receiving. If multi-TCP is disabled, then unicast UDP will

be used. If unicast UDP is also disabled, then the base

TCP connection will be used.

There are separate settings for sending and receiving.

Both sides need to allow this mode to be applied;

sources and receivers have it enabled by default.

Multi-TCP is not the default mode in NDI version 5

which sees better performance with Reliable UDP.

Page 16 of 51

 "unicast": {
 "send": {
 "enable": false
 },
 "recv": {
 "enable": false
 }
 },

These settings enable or disable unicast UDP sending or

receiving. If unicast UDP is disabled, then the base TCP

connection will be used.

Unicast settings determine whether UDP with forwards-

error correction is used for sending. While configurable,

we recommended that this is enabled by default and

not changed. Our experience has been that our UDP

implementation handles poor networks and packet loss

more robustly than TCP/IP, which can encounter

timeout problems when acknowledgment packets are

dropped (while rare, over a period of hours this can and

does happen).

The UDP implementation also fully implements paced

network sending with zero memory copy scatter-gather

lists and jittered timing, to reduce the chance of packet

loss on networks with many synchronized video

streams. By default, 4Kb UDP packets are used,

although jumbo packets do not need to be enabled on

the network.

All versions of NDI fall to TCP/IP if a particular protocol

is not supported by both sides. Again, note that that a

sender implementation can simultaneously send

internally in multiple modes, based on what receivers

require.

There are separate UDP unicast settings for sending and

receiving. Both sides need to allow this for UDP mode

to be applied; sources and receivers have it enabled by

default.

Unicast UDP is not the default mode in NDI version 5

which sees better performance with Reliable UDP.

"codec": {
 "shq": {
 "quality": 100,
 "mode": "auto"
 }
 },
 }
}

These settings are only available in the NDI Advanced

SDK and allow you to over-ride the default codec quality

settings of NDI. The “quality” setting is a percentage

scale to apply to the bit-rate control, for instance a

value of 200 would mean that NDI targets a bitrate that

is double the NDI default. Be careful when specifying

high bitrates because the CPU usage required for

compression and decompression might increase and

the strain on the network and the OS networking stack

is correspondingly increased. Once the bitrate hits a

maximum level for a particular media type (e.g., the

codec q value become the maximum) then increasing it

Page 17 of 51

further might have no impact.

The “mode” allows you to force NDI into a particular

color-mode. The default is “auto” which uses heuristics

to best allocate bits between the luminance and

chroma fields. You may specify “4:2:2” or “4:2:0” here

to force the codec into a particular chroma-subsampling

mode. Please note that often forcing it into a particular

mode will cause the codec to be less high quality than

letting the codec choose the bit allocation that results

in the best PSNR.

12 PLATFORM CONSIDERATIONS

Of course, all platforms are slightly different, and the location of configuration files and the settings can differ

slightly between platforms. On all platforms, if there is an environment variable NDI_CONFIG_DIR set before

initializing the SDK then we will load the ndi-config.v1.json from this folder when the library is used.

12.1 WINDOWS

The Windows platform is fully supported and provides high performance in all paths of NDI. As with all operating

systems, the x64 version provides the best performance. All modern CPU feature sets are supported. Please note

that the next major version of NDI will deprecate support for 32bit windows platforms.

We have found that on some computer systems, if you install "WireShark" to monitor network traffic, a virtual

device driver called "NPCap Loopback Driver" installs can interfere with NDI, potentially causing it to fail to

communicate. This is also a potential performance problem for networking since it is designed to intercept

network traffic. This driver is not required or used by modern versions of Wireshark. If you find it is installed on

your system, we recommend that you go to your network settings and use the context menu on the adapter to

disable it.

The NDI Tools bundle for Windows includes “Access Manager”, a user interface for configuring most of the settings

outlined above. These settings are also stored in C:\ProgramData\NDI\ndi-config.v1.json.

12.2 WINDOWS UWP

Unfortunately, the Universal Windows Platform imposes significant restrictions that can negatively affect NDI, and

about which you need to be aware. These are listed below.

• The UWP platform does not allow the receiving of network traffic from Localhost. This means that any sources

on your local machine will not be able to be received by a UWP NDI receiver.

https://docs.microsoft.com/en-us/windows/iot-core/develop-your-app/loopback

• The current Windows 10 UWP mDNS discovery library has a bug that will not correctly remove an

advertisement from the network after the source is no longer available; this source will eventually “time out”

on other finders; however, this might take a minute or two.

• Due to sandboxing, UWP applications cannot load external DLLs. This makes it unlikely that NDI|HX will work

correctly.

https://docs.microsoft.com/en-us/windows/iot-core/develop-your-app/loopback

Page 18 of 51

• When you create a new UWP project you must ensure you have all the correct capabilities specified in the

manifest for NDI to operate. Specifically, at time of writing you need:

o Internet (Client & Server)

o Internet (Client)

o Private Networks (Client & Server)

12.3 MACOS

The Mac platform is fully supported and provides high performance in all paths of NDI. As with all operating

systems, the x64 version provides the best performance. Reliable UDP support requires macOS 10.14 or later

which enabled IPv6 socket properties; NDI will work on earlier versions, but Reliable UDP will not be used.

Because of recent changes made within macOS in regard to signing of libraries, if you wish NDI|HX version 1 to

work within your applications, you should locate the options in XCode under “Targets->Signing & Capabilities” and

ensure that the option “Hardened Runtime -> Disable Library Validation” is checked.

In iOS 14 and XCode 12, a new setting was introduced to enable support for mDNS and Bonjour. Under “Bonjour

Services”, one should assign “Item 0” as being “_ndi._tcp.” in order for NDI discovery to operate correctly.

The configuration settings are stored in $HOME/.ndi/ndi-config.v1.json.

12.4 ANDROID

Because Android handles discovery differently than other NDI platforms, some additional work is needed. The NDI

library requires use of the “NsdManager” from Android and, unfortunately, there is no way for a third-party library

to do this on its own. As long as an NDI sender, finder, or receiver is instantiated, an instance of the NsdManager

will need to exist to ensure that Android’s Network Service Discovery Manager is running and available to NDI.

This is normally done by adding the following code to the beginning of your long running activities:

private NsdManager m_nsdManager;

At some point before creating an NDI sender, finder, or receiver, instantiate the NsdManager:

m_nsdManager = (NsdManager)getSystemService(Context.NSD_SERVICE);

You will also need to ensure that your application has configured to have the correct privileges required for this

functionality to operate.

12.5 IOS

iOS supports NDI finding, sending, and receiving.

In iOS 14 and XCode 12, a new setting was introduced to enable support for mDNS and Bonjour. Under “Bonjour

Services”, one should assign “Item 0” as being “_ndi._tcp.” In order for NDI discovery operate correctly. It is also

required to enable networking in the App sandbox settings.

The configuration settings are stored in $HOME/.ndi/ndi-config.v1.json.

12.6 LINUX

The Linux version is fully supported and provides high performance in all paths of NDI. The NDI library on Linux

depends on two 3rd party libraries:

Page 19 of 51

libavahi-common.so.3

libavahi-client.so.3

The usage of these libraries depends on the avahi-daemon service to be installed and running.

The configuration settings are stored in $HOME/.ndi/ndi-config.v1.json.

Please take careful note on the comments under Linux in the “Reliable UDP” in the “Performance and

Implementation” section.

13 NDI-SEND

A call to NDIlib_send_create will create an instance of the sender. This will return an instance of type

NDIlib_send_instance_t (or NULL if it fails) representing the sending instance.

The set of creation parameters applied to the sender are specified by filling out a structure called

NDIlib_send_create_t. It is now possible to call NDIlib_send_create with a NULL parameter, in which case it

will use default parameters for all values; the source name is selected using the current executable name, ensuring

that there is a count that ensures sender names are unique (e.g. “My Application”, “My Application 2”, etc.)

Supported

Parameters

p_ndi_name (const
char*)

This is the name of the NDI source to create. It is a NULL-terminated UTF-8 string. This
will be the name of the NDI source on the network.

For instance, if your network machine name is called “MyMachine” and you specify this
parameter as “My Video”, the NDI source on the network would be “MyMachine (My
Video)”.

p_groups (const
char*)

This parameter represents the groups that this NDI sender should place itself into.
Groups are sets of NDI sources. Any source can be part of any number of groups, and
groups are comma-separated. For instance "cameras,studio 1,10am show" would place
a source in the three groups named.

On the finding side, you can specify which groups to look for and look in multiple
groups. If the group is NULL then the system default groups will be used.

clock_video,
clock_audio (bool)

These specify whether audio and video "clock" themselves. When they are clocked,
video frames added will be rate-limited to match the current framerate they are
submitted at. The same is true for audio.

In general, if you are submitting video and audio off a single thread, you should only
clock one of them (video is probably the better choice to clock off). If you are
submitting audio and video of separate threads, then having both clocked can be useful.

A simplified view of how it works is that, when you submit a frame, it will keep track of

the time the next frame would be required at. If you submit a frame before this time,

the call will wait until that time. This ensures that, if you sit in a tight loop and render

frames as fast as you can go, they will be clocked at the framerate that you desire.

Note that combining clocked video and audio submission combined with asynchronous

frame submission (see below) allows you to write very simple loops to render and

submit NDI frames.

Page 20 of 51

An example of creating an NDI sending instance is provided below.

NDIlib_send_create_t send_create;

send_create.p_ndi_name = "My Video";

send_create.p_groups = NULL;

send_create.clock_video = true;

send_create.clock_audio = true;

NDIlib_send_instance_t pSend = NDIlib_send_create(&send_create);

if (!pSend)

 printf("Error creating NDI sender");

Once you have created a device, any NDI finders on the network will be able to see this source as available. You

may now send audio, video, or metadata frames to the device – at any time, off any thread, and in any order.

There are no reasonable restrictions on video, audio or metadata frames that can be sent or received. In general,

video frames yield better compression ratios as resolution increases (although the size does increase). Note that

all formats can be changed frame-to-frame.

The specific structures used to describe the different frame types are described under the section “Frame types”

below. An important factor to understand is that video frames are “buffered” on an input; if you provide a video

frame to the SDK when there are no current connections to it, the last video frame will automatically be sent when

a new incoming connection is received. This is done without any need to recompress a frame (it is buffered in

memory in compressed form).

The following represents an example of how one might send a single 1080i59.94 white frame over an NDI sending

connection.

// Allocate a video frame (you would do something smarter than this!)

uint8_t* p_frame = (uint8_t*)malloc(1920*1080*4);

memset(p_frame, 255, 1920*1080*4);

// Now send it!

NDIlib_video_frame_v2_t video_frame;

video_frame.xres = 1920;

video_frame.yres = 1080;

video_frame.FourCC = NDIlib_FourCC_type_BGRA;

video_frame.frame_rate_N = 30000;

video_frame.frame_rate_D = 1001;

video_frame.picture_aspect_ratio = 16.0f/9.0f;

video_frame.frame_format_type = NDIlib_frame_format_type_progressive;

video_frame.timecode = 0;

video_frame.p_data = p_frame;

video_frame.line_stride_in_bytes = 1920*4;

video_frame.p_metadata = "<Hello/>";

// Submit the buffer

NDIlib_send_send_video_v2(pSend, &video_frame);

// Free video memory

free(p_frame);

// In a similar fashion, audio can be submitted for NDI audio sending,

// the following will submit 1920 quad-channel silent audio samples

// at 48 kHz

// Allocate an audio frame (you would do something smarter than this!)

float* p_frame = (float*)malloc(sizeof(float)*1920*4)

memset(p_frame, 0, sizeof(float)*1920*4);

Page 21 of 51

// describe the buffer

NDIlib_audio_frame_v3_t audio_frame;

audio_frame.sample_rate = 48000;

audio_frame.no_channels = 4;

audio_frame.no_samples = 1920;

audio_frame.timecode = 0;

audio_frame.p_data = p_frame;

audio_frame.channel_stride_in_bytes = sizeof(float)*1920;

audio_frame.p_metadata = NULL; // No metadata on this example!

// Submit the buffer

NDIlib_send_send_audio_v3(pSend, &audio_frame);

// Free the audio memory

free(p_frame);

Because many applications provide interleaved 16-bit audio, the NDI library includes utility functions to convert

PCM 16-bit formats to and from floating-point formats.

Alternatively, there is a utility function (NDIlib_util_send_send_audio_interleaved_16s) for sending signed 16-

bit audio. (Please refer to the example projects and also the header file Processing.NDI.utilities.h , which lists

the functions available.) In general, we recommend using floating-point audio, since clamping is not possible and

audio levels are well defined without a need to consider audio headroom.

Metadata is submitted in a very similar fashion. (We do not provide a code example as this is easily understood by

referring to the audio and video examples.)

To receive metadata being sent from the receiving end of a connection (e.g., which can be used to select pages,

change settings, etc.) we refer you to the way the receive device works.

The basic process involves calling NDIlib_send_capture with a time-out value. This can be used either to query

whether a metadata message is available if the time-out is zero, or to efficiently wait for messages on a thread.

The basic process is outlined below:

// Wait for 1 second to see if there is a metadata message available

NDIlib_metadata_frame_t metadata;

if (NDIlib_send_capture(pSend, &metadata, 1000) == NDIlib_frame_type_metadata)

{

 // Do something with the metadata here

 // ...

 // Free the metadata message

 NDIlib_recv_free_metadata(pSend, &meta_data);

}

Connection metadata, as specified in the NDI-Recv section of this documentation, is an important category of

metadata that you will receive automatically as new connections to you are established. This allows an NDI

receiver to provide up-stream details to a sender and can include hints as to the capabilities the receiver might

offer. Examples include the resolution and framerate preferred by the receiver, its product name, etc. It is

important that a sender is aware that it might be sending video data to more than one receiver at a time, and in

consequence will receive connection metadata from each one of them.

Determining whether you are on program and/or preview output on a device such as a video mixer (i.e., ‘Tally’

information) is very similar to how metadata information is handled. You can ‘query’ it, or you can efficiently

‘wait’ and get tally notification changes. The following example will wait for one second and react to tally

notifications:

Page 22 of 51

// Wait for 1 second to see if there is a tally change notification.

NDIlib_tally_t tally_data;

if (NDIlib_send_get_tally(pSend, &tally_data)

{

 // The tally state changed and you can now

 // read the new state from tally_data.

}

An NDI send instance is destroyed by passing it into NDIlib_send_destroy.

Connection metadata is data that you can “register” with a sender; it will automatically be sent each time a new

connection with the sender is established. The sender internally maintains a copy of any connection metadata

messages and sends them automatically.

This is useful to allow a sender to provide downstream information whenever any device might want to connect to

it (for instance, letting it know what the product name or preferred video format might be). Neither senders nor

receivers are required to provide this functionality and may freely ignore any connection data strings.

Standard connection metadata strings are defined in a later section of this document. To add a metadata element,

one can call NDIlib_send_add_connection_metadata. To clear all the registered elements, one can call

NDIlib_send_clear_connection_metadata. An example that registers the name and details of your sender so

that other sources that connect to you get information about what you are is provided below.

// Provide a metadata registration that allows people to know what we are.

NDIlib_metadata_frame_t NDI_product_type;

NDI_product_type.p_data = "<ndi_product long_name=\"NDILib Send Example.\" "

 " short_name=\"NDILib Send\" "

 " manufacturer=\"CoolCo, inc.\" "

 " model_name=\"PBX-15M\" "

 " version=\"1.000.000\" "

 " serial=\"ABCDEFG\" "

 " session_name=\"My Midday Show\" />";

NDIlib_send_add_connection_metadata(pSend, &NDI_product_type);

Because NDI assumes that all senders must have a unique name and applies certain filtering to NDI names to make

sure that they are network name-space compliant, at times the name of a source you created may be modified

slightly. To assist you in getting the exact name of any sender (to ensure you use the same one) there is a function

to receive this name.

const NDIlib_source_t* NDIlib_send_get_source_name(NDIlib_send_instance_t p_instance);

The lifetime of the returned value is until the sender instance is destroyed.

13.1 ASYNCHRONOUS SENDING

It is possible to send video frames asynchronously using NDI using the call NDIlib_send_send_video_v2_async.

This function will return immediately and will perform all required operations (including color conversion, any

compression and network transmission) asynchronously with the call.

Because NDI takes full advantage of asynchronous OS behavior when available, this will normally result in

improved performance (as compared to creating your own thread and submitting frames asynchronously with

rendering).

The memory that you passed to the API through the NDIlib_video_frame_v2_t pointer will continue to be used

until a synchronizing API call is made. Synchronizing calls are any of the following:

Page 23 of 51

• Another call to NDIlib_send_send_video_v2_async.

• A call to NDIlib_send_send_video_v2_async(pSend, NULL) will wait for any asynchronously scheduled

frames to completed and then return. Obviously, you can also submit the next frame, whereupon it will wait

for the previous frame to finish before asynchronously submitting the current one.

• Another call to NDIlib_send_send_video_v2.

• A call to NDIlib_send_destroy.

Using this in conjunction with a clocked video output results in a very efficient rendering loop where you do not

need to use separate threads for timing or for frame submission. For example, the following is an efficient real-

time processing system as long as rendering can always keep up with real-time:

while(!done())

{

 render_frame();

 NDIlib_send_send_video_v2_async(pSend, &frame_data);

}

NDIlib_send_send_video_v2_async(pSend, NULL); // Sync here

Note: User error involving asynchronous sending is most common SDK ‘bug report’. It is very important to

understand that a call to NDIlib_send_send_video_v2_async starts processing, then sending the video frame

asynchronously with the calling application. If you call this and then free the pointer, your application will most

likely crash in an NDI thread – because the SDK is still using the video frame that was passed to the call.

If you re-use the buffer immediately after calling this function, your video stream will likely exhibit tearing or other

glitches, since you are writing to the buffer while the SDK is still compressing data it previously held. One possible

solution is to “ping pong” between two buffers on alternating calls to NDIlib_send_send_video_v2_async, and

then call that same function with a NULL frame pointer before releasing these buffers at the end of your

application. When working in this way you would generally render, compress, and send to the network, with each

process being asynchronous to the others.

Note: If you are using the Advanced SDK, it is possible to assign a completion handler for asynchronous frame

sending that more explicitly allows you to track buffer ownership with asynchronous sending.

13.2 TIMECODE SYNTHESIS

It is possible to specify your own timecode for all data sent when sending video, audio, or metadata frames. You

may also specify a value of NDIlib_send_timecode_synthesize (defined as INT64_MAX) to cause the SDK to

generate timecode for you. When you specify this, the timecode is synthesized as UTC time since the Unix Epoch

(1/1/1970 00:00) with 100 ns precision.

If you never specify a timecode at all (and instead ask for each to be synthesized) the current system clock time is

used as the starting timecode (translated to UTC since the Unix Epoch), and synthetic values are generated. This

keeping your streams exactly in sync, as long as the frames you are sending do does not deviate from the system

time in any meaningful way. In practice this means that, if you never specify timecodes, they will always be

generated correctly for you. Timecodes from different senders on the same machine will always be in sync with

each other when working in this way. And if you have NTP installed on your local network, streams can be

synchronized between multiple machines with very high precision.

Page 24 of 51

If you specify a timecode at a particular frame (audio or video), then ask for all subsequent ones to be synthesized,

the subsequent ones generated will continue this sequence. This maintains the correct relationship between the

streams and samples generated, avoiding any meaningful deviation from the timecode you specified over time.

If you specify timecodes on one stream (e.g., video) and ask for the other stream (audio) to be synthesized, the

timecodes generated for the other stream exactly match the correct sample positions; they are not quantized

inter-stream. This ensures that you can specify just the timecodes on a single stream and have the system

generate the others for you.

When you send metadata messages and ask for the timecode to be synthesized, it is chosen to match the closest

audio or video frame timecode (so that it looks close to something you might want). If no sample looks sufficiently

close, a timecode is synthesized from the last ones known and the time that has elapsed since it was sent.

Note that the algorithm to generate timecodes synthetically will correctly assign timestamps if frames are not

submitted at the exact time.

For instance, if you submit a video frame and then an audio frame in sequential order, they will both have the

same timecode even though the video frame may have taken a few milliseconds longer to encode.

That said, no per-frame error is ever accumulated. So – if you are submitting audio and video and they do not align

over a period of more than a few frames – the timecodes will still be correctly synthesized without accumulated

error.

13.3 FAILSAFE

Failsafe is a capability of any NDI sender. If you specify a failsafe source on an NDI sender and the sender fails for

any reason (even the machine failing completely), any receivers viewing that sender will automatically switch over

to the failsafe sender. If the failed source comes back online, receivers will switch back to that source.

You can set the fail-over source on any video input with a call to:

void NDIlib_send_set_failover(NDIlib_send_instance_t p_instance,

 const NDIlib_source_t* p_failover_source);

The failover source can be any network source. If it is specified as NULL the failsafe source will be cleared.

13.4 CAPABILITIES

An NDI capabilities metadata message can be submitted to the NDI sender for communicating certain functionality

that the downstream NDI receivers should know about upon connecting. For example, if you are providing PTZ

type functionality, letting the NDI receiver know this would done through this type of metadata message. The

following is an example of the NDI capabilities message:

<ndi_capabilities web_control="http://ndi.video/" ntk_ptz="true" ntk_exposure_v2="true" />

You would submit this message to the NDI sender for communication to current and future NDI receivers as

follows:

NDIlib_metadata_frame_t NDI_capabilities;

NDI_capabilities.p_data = "<ndi_capabilities web_control=\"http://ndi.video/\" "

 " ntk_ptz=\"true\" "

 " ntk_exposure_v2=\"true\" />";

NDIlib_send_add_connection_metadata(pNDI_send, &NDI_capabilities_type);

Below is a table of XML attributes that can be used in this capabilities message:

Page 25 of 51

Supported Attributes

web_control

The URL to the local device webpage. If %IP% is present in the value, it will be replaced
with the local IP of the NIC in which the NDI receiver is connected to.

ntk_ptz Signifies that this NDI sender is capable of processing PTZ commands sent from the NDI
receiver. The NDI receiver will only assume the NDI sender can support PTZ commands
if this attribute is received and set to the value “true”.

ntk_pan_tilt The NDI sender supports pan and tilt control.

ntk_zoom The NDI sender supports zoom control.

ntk_iris The NDI sender supports iris control.

ntk_white_balance The NDI sender supports white balance control.

ntk_exposure The NDI sender supports exposure control.

ntk_exposure_v2 The NDI sender supports detailed control over exposure such as iris, gain, and shutter
speed.

ntk_focus The NDI sender supports manual focus control.

ntk_autofocus The NDI sender supports setting auto focus.

ntk_preset_speed The NDI sender has preset speed support.

13.5 APPLE IOS NOTES

When an iOS app is sent to the background, most of the networking functionality is put into a suspended state.

Sometimes resources associated with networking are released back to the operating system while in this state.

Apple recommends closing certain networking operations when the app is placed in the background, then

restarted when put in the foreground again. Because of this, we recommend releasing an NDI sender instance

within the app’s applicationDidEnterBackground method, then recreating the instance in the

applicationDidBecomeActive method.

14 NDI-FIND

This is provided to locate sources available on the network and is normally used in conjunction with NDI-Receive.

Internally, it uses a cross-process P2P mDNS implementation to locate sources on the network. (It commonly takes

a few seconds to locate all the sources available, since this requires other running machines to send response

messages.)

Although discovery uses mDNS, the client is entirely self-contained; Bonjour (etc.) are not required. mDNS is a P2P

system that exchanges located network sources and provides a highly robust and bandwidth-efficient way to

perform discovery on a local network.

On mDNS initialization (often done using the NDI-Find SDK), a few seconds might elapse before all sources on the

network are located. Be aware that some network routers might block mDNS traffic between network segments.

Creating the find instance is very similar to the other APIs – one fills out a NDIlib_find_create_t structure to

describe the device that is needed. It is possible to specify a NULL creation parameter in which case default

parameters are used.

Page 26 of 51

If you wish to specify the parameters manually, then the member values are as follows:

Supported Values

show_local_sources (bool)

This flag tells the finder whether it should locate and report NDI send sources that
are running on the current local machine.

p_groups (const char*) This parameter specifies groups for which this NDI finder will report sources. A
full description of this parameter and what a NULL default value means is
provided in the description of the NDI-Send SDK.

p_extra_ips (const char*)

This parameter will specify a comma separated list of IP addresses that will be
queried for NDI sources and added to the list reported by NDI find.

These IP addresses need not be on the local network and can be in any IP visible
range. NDI find will be able to find and report any number of NDI sources running
on remote machines and will correctly observe them coming online and going
offline.

Once you have a handle to the NDI find instance, you can recover the list of current sources by calling

NDIlib_find_get_current_sources at any time. This will immediately return with the current list of located

sources.

The pointer returned by NDIlib_find_get_current_sources is owned by the finder instance, so there is no reason

to free it. It will be retained until the next call to NDIlib_find_get_current_sources, or until the

NDIlib_find_destroy function is destroyed.

You can call NDIlib_find_wait_for_sources to wait until the set of network sources has been changed; this takes

a time-out in milliseconds. If a new source is found on the network, or one has been removed before this time has

elapsed, the function will return true immediately. If no new sources are seen before the time has elapsed, it will

return false.

The following code will create an NDI-Find instance, and then list the current available sources. It uses

NDIlib_find_wait_for_sources to sleep until new sources are found on the network and, when they are seen,

calls NDIlib_find_get_current_sources to get the current list of sources:

// Create the descriptor of the object to create

NDIlib_find_create_t find_create;

find_create.show_local_sources = true;

find_create.p_groups = NULL;

// Create the instance

NDIlib_find_instance_t pFind = NDIlib_find_create_v2(&find_create);

if (!pFind)

 /* Error */;

while (true) // You would not loop forever of course !

{

 // Wait up till 5 seconds to check for new sources to be added or removed

 if (!NDIlib_find_wait_for_sources(pFind, 5000))

 {

 // No new sources added!

 printf("No change to the sources found.\n");

 }

 else

Page 27 of 51

 {

 // Get the updated list of sources

 uint32_t no_sources = 0;

 const NDIlib_source_t* p_sources =

 NDIlib_find_get_current_sources(pFind, &no_sources);

 // Display all the sources.

 printf("Network sources (%u found).\n", no_sources);

 for (uint32_t i = 0; i < no_sources; i++)

 printf("%u. %s\n", i + 1, p_sources[i].p_ndi_name);

 }

}

// Destroy the finder when you’re all done finding things

NDIlib_find_destroy(pFind);

It is important to understand that mDNS discovery might take some time to locate all network sources. This means

that an ‘early’ return to NDIlib_find_get_current_sources might not include all the sources on the network;

these will be added (or removed) as additional or new sources are discovered. It commonly takes a few seconds to

discover all sources on a network.

For applications that wish to list the current sources in a user interface menu, the recommended approach would

be to create an NDIlib_find_instance_t instance when your user interface is opened and then – each time you

wish to display the current list of available sources – call NDIlib_find_get_current_sources.

15 NDI-RECV

The NDI® Receive SDK is how frames are received over the network. It is important to be aware that it can connect

to sources and remain “connected” to them even when they are no longer available on the network; it will

automatically reconnect if the source becomes available again.

As with the other APIs, the starting point is to use the NDIlib_recv_create_v3 function. This function may be

initialized with NULL and default settings are used. This takes parameters defined by NDIlib_recv_create_v3_t,

as follows:

Supported Parameters

source_to_connect_to This is the source name that should be connected too. This is in the exact format

returned by NDIlib_find_get_sources.

Note that you may specify the source as a NULL source if you wish to create a

receiver that you desire to connect at a later point with NDIlib_recv_connect.

p_ndi_name This is a name that is used for the receiver and will be used in future versions of the
SDK to allow discovery of both senders and receivers on the network. This can be
specified as NULL and a unique name based on the application executable name will
be used.

color_format This parameter determines what color formats you are passed when a frame is
received. In general, there are two color formats used in any scenario: one that
exists when the source has an alpha channel, and another when it does not.

The following table lists the optional values that can be used to specify the color format to be returned.

Page 28 of 51

Optional color_format values Frames without alpha Frames with alpha

NDIlib_recv_color_format_BGRX_BGRA BGRX BGRA

NDIlib_recv_color_format_UYVY_BGRA UYVY BGRA

NDIlib_recv_color_format_RGBX_RGBA RGBX RGBA

NDIlib_recv_color_format_UYVY_RGBA UYVY RGBA

NDIlib_recv_color_format_fastest Normally UYVY. See notes

below.

Normally UYVA. See notes

below.

NDIlib_recv_color_format_best Varies. See notes below. Varies. See notes below.

COLOR_FORMAT NOTES

If you specify the color option NDIlib_recv_color_format_fastest, the SDK will provide buffers in the format

that it processes internally without performing any conversions before they are passed to you. This results in the

best possible performance. This option also typically runs with lower latency than other options since it supports

single-field format types.

The allow_video_fields option is assumed to be true in this mode. On most platforms this will return an 8-bit

UYVY video buffer when there is no alpha channel, and an 8-bit UYVY+A buffer when there is. These formats are

described in the description of the video layout.

If you specify the color option NDIlib_recv_color_format_best, the SDK will provide you buffers in the format

closest to the native precision of the video codec being used. In many cases this is both high-performance and

high-quality and results in the best quality.

Like the NDIlib_recv_color_format_fastest,this format will always deliver individual fields, implicitly assuming

the allow_video_fields option as true.

On most platforms, when there is no alpha channel this will return either a 16-bpp Y+Cb,Cr (P216 FourCC) buffer

when the underlying codec is native NDI, or a 8-bpp UYVY buffer when the native codec is an 8-bit codec like

H.264. When there is alpha channel this will normally return a 16-bpp Y+Cb,Cr+A (PA16 FourCC) buffer.

You should support the NDIlib_video_frame_v2_t properties as widely as you possibly can in this mode, since

there are very few restrictions on what you might be passed.

Supported Parameters (Continued)

bandwidth This allows you to specify whether this connection is in high or low bandwidth mode. It is

an enumeration because other alternatives may be available in future. For most uses you

should specify NDIlib_recv_bandwidth_highest, which will result in the same stream

that is being sent from the up-stream source to you.

You may specify NDIlib_recv_bandwidth_lowest, which will provide you with a medium
quality stream that takes significantly reduced bandwidth.

Page 29 of 51

allow_video_fields If your application does not like receiving fielded video data you can specify false to this
value, and all video received will be de-interlaced before it is passed to you.

The default value should be considered true for most applications. The implied value is
true when color_format is NDIlib_recv_color_format_fastest.

p_ndi_name This is the name of the NDI receiver to create. It is a NULL-terminated UTF-8 string. Give
your receiver a meaningful, descriptive, and unique name. This will be the name of the
NDI receiver on the network. For instance, if your network machine name is called
“MyMachine” and you specify this parameter as “Video Viewer”, then the NDI receiver
on the network would be “MyMachine (Video Viewer)”.

Once you have filled out this structure, calling NDIlib_recv_create_v3 will create an instance for you. A full

example is provided with the SDK that illustrates finding a network source and creating a receiver to view it (we

will not reproduce that code here).

If you create a receiver with NULL as the settings, or if you wish to change the remote source that you are

connected to, you may call NDIlib_recv_connect at any time with a NDIlib_source_t pointer. If the source

pointer is NULL it will disconnect you from any sources to which you are connected.

Once you have a receiving instance you can query it for video, audio, or metadata frames by calling

NDIlib_recv_capture_v3. This function takes a pointer to the header for audio (NDIlib_audio_frame_v3_t),

video (NDIlib_video_frame_v2_t), and metadata (NDIlib_metadata_frame_t), any of which can be NULL. It can

safely be called across many threads at once, allowing you to have one thread receiving video while another

receives audio.

The NDIlib_recv_capture_v3 function takes a timeout value specified in milliseconds. If a frame is available when

you call NDIlib_recv_capture_v3, it will be returned without any internal waiting or locking of any kind. If the

timeout is zero, it will return immediately with a frame if there is one. If the timeout is not zero, it will wait for a

frame up to the timeout duration specified and return if it gets one (if there is already a frame waiting when the

call is made it returns that frame immediately). If a frame of the type requested has been received before the

timeout occurs, the function will return the data type received. Frames returned to you by this function must be

freed.

The following code illustrates how one might receive audio and/or video based on what is available; it will wait one

second before returning if no data was received;

NDIlib_video_frame_v2_t video_frame;

NDIlib_audio_frame_v3_t audio_frame;

NDIlib_metadata_frame_t metadata_frame;

switch (NDIlib_recv_capture_v3(pRecv, &video_frame, &audio_frame, &metadata_frame, 1000))

{

 // We received video.

 case NDIlib_frame_type_video:

 // Process video here

 // Free the video.

 NDIlib_recv_free_video_v2(pRecv, &video_frame);

 break;

 // We received audio.

 case NDIlib_frame_type_audio:

 // Process audio here

 // Free the audio.

 NDIlib_recv_free_audio_v3(pRecv, &audio_frame);

Page 30 of 51

 break;

 // We received a metadata packet

 case NDIlib_frame_type_metadata:

 // Do what you want with the metadata message here.

 // Free the message

 NDIlib_recv_free_metadata(pRecv, &metadata_frame);

 break;

 // No audio or video has been received in the time-period.

 case NDIlib_frame_type_none:

 break;

 // The device has changed status in some way (see notes below)

 case NDIlib_frame_type_status_change:

 break;

}

You are able, if you wish, to take the received video, audio, or metadata frames and free them on another thread

to ensure there is no chance of dropping frames while receiving them. A short queue is maintained on the receiver

to allow you to process incoming data in the fashion most convenient for your application. If you always process

buffers faster than real-time this queue will always be empty, and you will be running at the lowest possible

latency.

NDIlib_recv_capture_v3 may return the value NDIlib_frame_type_status_change, to indicate that the device’s

properties have changed. Because connecting to a video source might take a few seconds, some of the properties

of that device are not known immediately and might even change on the fly. For instance, when connecting to a

PTZ camera, it might not be known for a few seconds that it supports the PTZ command set.

When this does become known, the value NDIlib_frame_type_status_change is returned to indicate that you

should recheck device properties. This value is currently sent when a source changes PTZ type, recording

capabilities or web user interface control.

If you wish to determine whether any audio, video or metadata frames have been dropped, you can call

NDIlib_recv_get_performance, which will supply the total frame count and the number of frames that have been

dropped because they could not be de-queued fast enough.

If you wish to determine the current queue depths on audio, video, or metadata (to poll whether receiving a frame

would immediately give a result), you can call NDIlib_recv_get_queue.

NDIlib_recv_get_no_connections will return the number of connections that are currently active and can also be

used to detect whether the video source you are connected to is currently online or not. Additional functions

provided by the receive SDK allow metadata to be passed upstream to connected sources via

NDIlib_recv_send_metadata. Much like the sending of metadata frames in the NDI Send SDK, this is passed as an

NDIlib_metadata_frame_t structure that is to be sent.

Tally information is handled via NDIlib_recv_set_tally. This will take a NDIlib_tally_t structure that can be

used to define the program and preview visibility status. The tally status is retained within the receiver so that,

even if a connection is lost, the tally state is correctly set when it is subsequently restored.

Connection metadata is an important concept that allows you to “register” certain metadata messages so that

each time a new connection is established the up-stream source (normally an NDI Send user) receives those

strings. Note that there are many reasons that connections might be lost and established at run time.

Page 31 of 51

For instance, if an NDI-Sender goes offline the connection is lost; if it comes back online at a later time, the

connection would be re-established, and the connection metadata would be resent. Some standard connection

strings are specified for connection metadata, as outlined in the next section.

Connection metadata strings are added with NDIlib_recv_add_connection_metadata that takes an

NDIlib_metadata_frame_t structure. To clear all connection metadata strings, allowing them to be replaced, call

NDIlib_recv_clear_connection_metadata.

An example that illustrates how you can provide your product name to anyone who ever connects to you is

provided below.

// Provide a metadata registration that allows people to know what we are.

NDIlib_metadata_frame_t NDI_product_type;

NDI_product_type.p_data = "<ndi_product long_name=\"NDILib Receive Example.\" "

 " short_name=\"NDILib Receive\" "

 " manufacturer=\"CoolCo, inc.\" "

 " version=\"1.000.000\" "

 " model_name=\"PBX-42Q\" "

 " session_name=\"My Midday Show\" "

 " serial=\"ABCDEFG\" />";

NDIlib_recv_add_connection_metadata(pRecv, &NDI_product_type);

Note: When using the Advanced SDK, it is possible to assign custom memory allocators for receiving that will allow

you to provide user-controlled buffers that are decompressed into. In some cases, this might improve

performance or allow you to receive frames into GPU accessible buffers.

15.1 RECEIVER USER INTERFACES

A sender might provide an interface that allows configuration. For instance, an NDI-converter device might offer an

interface that allows its settings to be changed; or a PTZ camera might provide an interface that provides access to

specific setting and mode values. These interfaces are provided via a web URL that you can host.

For example, a converter device might have an Advanced SDK web page that is served at a URL such as

http://192.168.1.156/control/index.html. In order to get this address, you simply call the function:

const char* NDIlib_recv_get_web_control(NDIlib_recv_instance_t p_instance);

This will return a string representing the URL, or NULL if there is no current URL associated with the sender in

question. Because connections might take a few seconds, this string might not be available immediately after

having called connect. To avoid the need to poll this setting, note that NDIlib_recv_capture_v3 returns a value of

NDIlib_frame_type_status_change when this setting is known (or when it has changed).

The string returned is owned by your application until you call NDIlib_recv_free_string. An example to recover

this is illustrated below:

const char* p_url = NDIlib_recv_get_web_control(pRecv);

if (p_url)

{

 // You now have a URL that you can embed in your user interface if you want!

 // Do what you want with it here and when done, call:

 NDIlib_recv_free_string(pRecv, p_url);

}

else

{

 // This device does not currently support a configuration user interface.

}

http://192.168.1.156/control/index.html

Page 32 of 51

You can then store this URL and provide it to an end user as the options for that device. For instance, a PTZ

camera or an NDI conversion box might allow its settings to be configured using a hosted web interface.

For sources indicating they support the ability to be configured, NDI Studio Monitor application includes this

capability as shown in the bottom-right corner of the image below.

When you click this gear gadget, the application opens the web page specified by the sender.

15.2 RECEIVER PTZ CONTROL

NDI standardizes the control of PTZ cameras. An NDI receiver will automatically sense

whether the device it is connected to is a PTZ camera, and whether it may be controlled

automatically.

When controlling a camera via NDI, all configuration of the camera is completely transparent

to the NDI client, which will respond to a uniform set of standard commands with well-

defined parameter ranges. For instance, NDI Studio Monitor application uses these

commands to display on-screen PTZ controls when the current source is reported to be a

camera that supports control.

To determine whether the connection that you are on would respond to PTZ messages, you may simply ask the

receiver whether this property is supported using the following call:

bool NDIlib_recv_ptz_is_supported(NDIlib_recv_instance_t p_instance);

This will return true when the video source is a PTZ system, and false otherwise. Note that connections are not

instantaneous, so you might need to wait a few seconds after connection before the source indicates that it

supports PTZ control. To avoid the need to poll this setting, note that NDIlib_recv_capture_v3 returns a value of

NDIlib_frame_type_status_change when this setting is known (or when it has changed).

15.2.1 PTZ CONTROL

There are standard API functions to execute the standard set of PTZ commands. This list is not designed to be

exhaustive and may be expanded in the future.

It is generally recommended that PTZ cameras provide a web interface to give access to the full set of capabilities

of the camera and that the host application control the basic messages listed below.

15.2.1.1 ZOOM LEVEL

bool NDIlib_recv_ptz_zoom(NDIlib_recv_instance_t p_instance, const float zoom_value);

Set the camera zoom level. The zoom value ranges from 0.0 to 1.0.

15.2.1.2 ZOOM SPEED

bool NDIlib_recv_ptz_zoom_speed(NDIlib_recv_instance_t p_instance, const float zoom_speed);

Page 33 of 51

Control the zoom level as a speed value. The zoom speed value is in the range [-1.0, +1.0] with zero indicating no

motion.

15.2.1.3 PAN AND TILT

bool NDIlib_recv_ptz_pan_tilt_speed(NDIlib_recv_instance_t p_instance, const float

pan_speed,

const float tilt_speed);

This will tell the camera to move with a specific speed toward a direction. The speed is specified in a range [-1.0,

1.0], with 0.0 meaning no motion.

bool NDIlib_recv_ptz_pan_tilt(NDIlib_recv_instance_t p_instance, const float pan_value,

 const float tilt_value);

This will set the absolute values for pan and tilt. The range of these values is [-1.0, +1.0], with 0.0 representing

center.

15.2.1.4 PRESETS

bool NDIlib_recv_ptz_store_preset(NDIlib_recv_instance_t p_instance, const int preset_no);

Store the current camera position as a preset. The preset number is in the range 0 to 99.

bool NDIlib_recv_ptz_recall_preset(NDIlib_recv_instance_t p_instance,

 const int preset_no, const float speed);

Recall a PTZ preset. The preset number is in the range 0 to 99. The speed value is in the range 0.0 to 1.0, and

controls how fast it will move to the preset.

15.2.1.5 FOCUS

Focus on cameras can either be in auto-focus mode or in manual focus mode. The following are examples of these

commands:

bool NDIlib_recv_ptz_auto_focus(NDIlib_recv_instance_t p_instance);

bool NDIlib_recv_ptz_focus(NDIlib_recv_instance_t p_instance, const float focus_value);

If the mode is auto, then there are no other settings. If the mode is manual, then the value is the focus distance,

specified in the range 0.0 to 1.0.

If you wish to control the focus by speed instead of absolute value, you may do this as follows:

bool NDIlib_recv_ptz_focus_speed(NDIlib_recv_instance_t p_instance,

 const float focus_speed);

The focus speed is in the range -1.0 to +1.0, with 0.0 indicating no change in focus value.

15.2.1.6 WHITE BALANCE

White balance can be in a variety of modes, including the following:

bool NDIlib_recv_ptz_white_balance_auto(NDIlib_recv_instance_t p_instance);

This will place the camera in auto-white balance mode.

bool NDIlib_recv_ptz_white_balance_indoor(NDIlib_recv_instance_t p_instance);

This will place the camera in auto-white balance mode, but with a preference for indoor settings.

bool NDIlib_recv_ptz_white_balance_outdoor(NDIlib_recv_instance_t p_instance);

This will place the camera in auto-white balance mode, but with a preference for outdoor settings.

Page 34 of 51

bool NDIlib_recv_ptz_white_balance_manual(NDIlib_recv_instance_t p_instance,

 const float red, const float blue);

This allows for manual white-balancing, with the red and blue values in the range 0.0 to 1.0.

bool NDIlib_recv_ptz_white_balance_oneshot(NDIlib_recv_instance_t p_instance);

This allows you to setup the white-balance automatically using the current center of the camera position. It will

then store that value as the white-balance setting.

15.2.1.7 EXPOSURE CONTROL

Exposure can either be automatic or manual.

bool NDIlib_recv_ptz_exposure_auto(NDIlib_recv_instance_t p_instance);

This will place the camera in auto exposure mode.

bool NDIlib_recv_ptz_exposure_manual_v2(NDIlib_recv_instance_t p_instance,

 const float iris,

const float gain,

const float shutter_speed);

This will place the camera in manual exposure mode with values in the range [0.0, 1.0].

15.3 RECEIVERS AND TALLY MESSAGES

Video receivers can specify whether the source is visible on a video switcher’s program or preview row. This is

communicated up-stream to the source’s sender, which then indicates its state (see the section on the sender SDK

within this document). The sender takes its state and echoes it to all receivers as a metadata message of the form:

<ndi_tally_echo on_program="true" on_preview="false"/>

This message is very useful, allowing every receiver to ‘know’ whether its source is on program output.

To illustrate, consider a sender named “My Source A” sending to two destinations, “Switcher” and “Multi-viewer”.

When “Switcher” places “My Source A” on program out, a tally message is sent from “Switcher” to “My Source A”.

Thus, the source ‘knows’ it is visible on program output. At this point, it will echo its tally state to “Multi-viewer”

(and “Switcher”), so that the receiver is aware that “My Source A” is on program out. This functionality is used in

the NDI tools Studio Monitor application to display an indicator when the source monitored has its tally state set.

15.4 FRAME SYNCHRONIZATION

When using video, it is important to realize that different clocks are often used by different parts of the signal

chain.

Within NDI, the sender can send at the clock rate it wants, and the receiver will receive it at that rate. In many

cases, however, the sender and receiver are extremely unlikely to share the exact same clock rate. Bear in mind

that computer clocks rely on crystals which – while notionally rated for the same frequency – are seldom truly

identical. For example, your sending computer might have an audio clock rated to operate at 48000 Hz. However,

it might well actually run at 48001 Hz, or perhaps 47998 Hz.

Page 35 of 51

Similar variances also affect receivers. While the differences appear miniscule, they can accumulate to cause

significant audio sync drift over time. A receiver may receive more samples than it plays back; or audible glitches

can occur because too few audio samples are sent in a given timespan. Naturally, the same problem affects video

sources.

It is very common to address these timing discrepancies by having a "frame buffer", and displaying the most

recently received video frame. Unfortunately, the deviations in clock-timing prevent this from being a perfect

solution. Frequently, for example, video will appear to ‘jitter’ when the sending and receiving clocks are almost

aligned (which is actually the most common case).

A "time base corrector" (TBC) or frame-synchronizer for the video clock provides another mechanism to handle

these issues. This approach uses hysteresis to determine the best time to either drop or insert a video frame to

achieve smooth video playback (audio should be dynamically sampled with a high order resampling filter to

adaptively track clocking differences).

It’s quite difficult to develop something that is correct for all of the diverse scenarios that can arise, so the NDI SDK

provides an implementation to help you develop real time audio/video applications without assuming

responsibility for the significant complexity involved.

Another way to view what this component of the SDK does is to think of it as transforming ‘push’ sources (i.e., NDI

sources in which the data is pushed from the sender to the receiver) into ‘pull’ sources, wherein the host

application pulls the data down-stream. The frame-sync automatically tracks all clocks to achieve the best video

and audio performance while doing so.

In addition to time-base correction operations, NDI’s frame sync will also automatically detect and correct for

timing jitter that might occur. This internally handles timing anomalies such as those caused by network, sender or

receiver side timing errors related to CPU limitations, network bandwidth fluctuations, etc.

A very common application of the frame-synchronizer is to display video on screen timed to the GPU v-sync, in

which case you should convert the incoming time-base to the time-base of the GPU. The following table lists some

are common scenarios in which you might want to use frame-synchronization:

Scenario Recommendation

Video playback on a
screen or multiviewer

Yes – you want the clock to be synced with vertical refresh. On a
multiviewer you would have a frame-sync for every video source, then call
all of them on each v-sync and redraw all sources at that time.

Audio playback through sound card Yes – the clock should be synced with your sound card clock.

Video mixing of sources Yes – all video input clocks need to be synced to your output video clock.
You can take each of the video inputs and frame-synchronize them
together.

Audio mixing Yes – you want all input audio clocks to be brought into sync with your
output audio clock. You would create a frame-synchronizer for each audio
source and – when driving the output – call each one, asking for the
correct number of samples and sample-rate for your output.

Recording a single channel No – you should record the signal in the raw form without any re-clocking.

Page 36 of 51

Recording multiple channels Maybe – If you want to sync some input channels to match a master clock
so that they can be ISO-edited, you might want a frame sync for all sources
except one (allowing them all to be synchronized with a single channel).

To create a frame synchronizer object, you will call the function below (that is based an already instantiated NDI

receiver from which it will get frames). Once this receiver has been bound to a frame-sync, you should use it in order

to recover video frames.

You can continue to use the underlying receiver for other operations, such as tally, PTZ, metadata, etc.

Remember, it remains your responsibility to destroy the receiver – even when a frame-sync is using it (you should

always destroy the receiver after the framesync has been destroyed).

NDIlib_framesync_instance_t NDIlib_framesync_create(NDIlib_recv_instance_t p_receiver);

The frame-sync is destroyed with the corresponding call:

void NDIlib_framesync_destroy(NDIlib_framesync_instance_t p_instance);

In order to recover audio, the following function will pull audio samples from the frame-sync queue. This function

will always return data immediately, inserting silence if no current audio data is present. You should call this at the

rate that you want audio, and it will automatically use dynamic audio sampling to conform the incoming audio

signal to the rate at which you are calling.

Note that you have no obligation to ensure that your requested sample rate, channel count and number of

samples match the incoming signal, and all combinations of conversions are supported.

Audio resampling is done with high order audio filters. Timecode and per frame metadata are inserted into the

best possible audio samples.

Also, if you specify the desired sample-rate as zero it will fill in the buffer (and audio data descriptor) with the

original audio sample rate. And if you specify the channel count as zero, it will fill in the buffer (and audio data

descriptor) with the original audio channel count.

void NDIlib_framesync_capture_audio(

 NDIlib_framesync_instance_t p_instance, // The frame sync instance

 NDIlib_audio_frame_v2_t* p_audio_data, // The destination audio buffer

 int sample_rate, // Your desired sample rate. 0 for “use source”.

 int no_channels, // Your desired channel count. 0 for “use source”.

 int no_samples); // The number of audio samples that you wish to get.

The buffer returned is freed using the corresponding function:

void NDIlib_framesync_free_audio(NDIlib_framesync_instance_t p_instance,

 NDIlib_audio_frame_v2_t* p_audio_data);

This function will pull video samples from the frame-sync queue. It will always immediately return a video sample

by using time-base correction. You can specify the desired field type, which is then used to return the best

possible frame.

Note that:

• Field-based frame sync means that the frame synchronizer attempts to match the fielded input phase

with the frame requests to provide the most correct possible field ordering on output.

• The same frame can be returned multiple times if duplication is needed to match the timing criteria.

Page 37 of 51

It is assumed that progressive video sources can i) correctly display either a field 0 or field 1, ii) that fielded sources

can correctly display progressive sources, and iii) that the display of field 1 on a field 0 (or vice versa) should be

avoided at all costs.

If no video frame has ever been received, this will return NDIlib_video_frame_v2_t as an empty (all zero)

structure. This allows you to determine that there has not yet been any video, and act accordingly (for instance

you might want to display a constant frame output at a particular video format, or black).

void NDIlib_framesync_capture_video(

 NDIlib_framesync_instance_t p_instance, // The frame-sync instance

 NDIlib_video_frame_v2_t* p_video_data, // The destination video frame

 NDIlib_frame_format_type_e field_type); // The frame type that you prefer

The buffer returned is freed using the corresponding function:

void NDIlib_framesync_free_video(NDIlib_framesync_instance_t p_instance,

 NDIlib_video_frame_v2_t* p_video_data);

16 NDI-ROUTING

Using NDI® routing, you can create an output on a machine that looks just like a ‘real’ video source to all remote

systems. However, rather than producing actual video frames, it directs sources watching this output to receive

video from a different location.

For instance: if you have two NDI video sources - “Video Source 1” and “Video Source 2” – you can create an

NDI_router called “Video Routing 1”, and direct it at “Video Source 1”. “Video Routing 1” will be visible to any NDI

receivers on the network as an available video source. When receivers connect to “Video Routing 1”, the data they

receive will actually be from “Video Source 1”.

NDI routing does not actually transfer any data through the computer hosting the routing source; it merely

instructs receivers to look at another location when they wish to receive data from the router. Thus, a computer

can act as a router exposing potentially hundreds of routing sources to the network – without any bandwidth

overhead. This facility can be used for large scale dynamic switching of sources at a network level.

You create a video routing source using:

NDIlib_routing_instance_t NDIlib_routing_create(

 const NDIlib_routing_create_t* p_create_settings);

The creation settings allow you to assign a name and group to the source that is created. Once the source is

created, you can tell it to route video from another source using:

bool NDIlib_routing_change(NDIlib_routing_instance_t p_instance,

 const NDIlib_source_t* p_source);

and:

bool NDIlib_routing_clear(NDIlib_routing_instance_t p_instance);

Finally, when you are finished, you can dispose of the router using:

void NDIlib_routing_destroy(NDIlib_routing_instance_t p_instance);

Page 38 of 51

17 COMMAND LINE TOOLS

17.1 RECORDING

A, full cross-platform native NDI recording is provided in the SDK. This is provided as a command line application in

order to allow it to be integrated into both end-user applications and scripted environments. All input and output

from this application is provided over stdin and stdout, allowing you to read and/or write to these in order to

control the recorder.

The NDI recording application implements most of the complex components of file recording, and may be included

in your applications under the SDK license. The functionality provided by the NDI recorder is as follows:

• Record any NDI source. For full-bandwidth NDI sources, no video recompression is performed. The stream is

taken from the network and simply stored on disk, meaning that a single machine will take almost no CPU

usage in order to record streams. File writing uses asynchronous block file writing, which should mean that

the only limitation on the number of recorded channels is the bandwidth of your disk sub-system and

efficiency of the system network and disk device drivers.

• All sources are synchronized. The recorder will time-base correct all recordings to lock to the current system

clock. This is designed so that, if you are recording a large number of NDI sources, the resulting files are

entirely synchronized with each other. Because the files are written with timecode, they may then be used in

a nonlinear editor without any additional work required for multi-angle or multi-source synchronization.

• Still better, if you lock the clock between multiple computers systems using NTP, recordings done

independently on all computer systems will always be automatically synchronized.

• The complexities of discontinuous and unlocked sources are handled correctly. The recorder will handle

cases in which audio and/or video are discontinuous or not on the same clock. It should correctly provide

audio and video synchronization in these cases and adapt correctly even when poor input signals are used.

• High Performance. Using asynchronous block-based disk writing without any video compression in most cases

means that the number of streams written to disk is largely limited only by available network bandwidth and

the speed of your drives1. On a fast system, even a large number of 4K streams may be recorded to disk!

• Much more … Having worked with a large number of companies wanting recording capabilities, we realized

that providing a reference implementation that handles a lot of the edge-cases and problems of recording

would be hugely beneficial. And allowing all sources to be synchronized makes NDI a fundamentally more

powerful and useful tool for video in all cases.

• The implementation provided is cross-platform, and may be used under the SDK license in commercial and

free applications. Note that audio is recorded in floating-point and so is never subject to audio clipping at

record time.

1 Note that in practice the performance of the device drivers for the disk and network sub-systems quickly become

an issue as well. Ensure that you are using well-designed machines if you wish to work with large channel counts.

Page 39 of 51

Recording is implemented as a stand-alone executable, which allows it either to be used in your own scripting

environments (both locally and remotely), or called from an application. The application is designed to take

commands in a structured form from stdin and put feedback out onto stdout.

17.1.1 COMMAND LINE ARGUMENTS

The primary use of the application would be to run it and specify the NDI source name and the destination file-

name. For instance, if you wished to record a source called My Machine (Source 1) into a file C:\Temp\A.mov. The

command line to record this would be:

"NDI Record.exe" –I "My Machine (Source 1)" –o "C:\Temp\A.mov"

This would then start recording when this source has first provided audio and video (both are required in order to

determine the format needed in the file). Additional command line options are listed below:

Command Line Option Description

-i "source-name" Required option.
The NDI source name to record.

-o "file-name" Required option.
The filename you wish to record into. Please note that if the filename already exists a
number will be appended to it to ensure that it is unique.

-u "url" Optional.
This is the URL of the NDI source if you wish to have recording start slightly quicker, or if
the source is not currently visible in the current group or network.

-nothumbnail Optional.
Specify whether a proxy file should be written. By default this option is enabled.

-noautochop Optional.
When specified, this specifies that if the video properties change (resolution, framerate,
aspect ratio) the existing file is chopped and new one started with a number appended.
When false it will simply exit when the video properties change, allowing you to start it
again with a new file-name should you want. By default, if the video format changes it
will open a new file in that format without dropping any frames.

-noautostart Optional.
This command may be used to achieve frame-accurate recording as needed. When
specified, the record application will run and connect to the remote source however it
will not immediately start recording. It will them start immediately when you send a
<start/> message to stdin.

Once running, the application can be interacted with by taking input on stdin, and will provide response onto

stdout. These are outlined below.

If you wish to quit the application, the preferred mechanism is described in the input settings section, however

one may also press CTRL+C to signal an exit and the file will be correctly closed. If you kill the recorder process

while it is running the resulting file will be invalid, since QuickTime files require an index at the end of the file. The

Windows version of the application will also monitor its launching parent process; if that should exit it will

correctly close the file and exit.

17.1.2 INPUT SETTINGS

While this application is running, a number of commands can be sent to stdin. These are all in XML format and

can control the current recording settings. These are outlined as follows.

Page 40 of 51

Command Line Option Description

<start/> Start recording at this moment; this is used in conjuction with the “-noautostart”
command line.

<exit/> or <quit/> This will cancel recording and exit the moment that the file is completely on disk.

<record_level gain="1.2"/> This allows you to control the current recorded audio levels in decibels.
1.2 would apply 1.2 dB of gain to the audio signal while recording to disk.

<record_agc
enabled="true"/>

Enable (or disable) automatic gain control for audio, which will use an
expander/compressor to normalize the audio while it is being recorded.

<record_chop/> Immediately stop recording, then restart another file without dropping frames.

<record_chop
filename="another.mov"/>

Immediately stop recording, and start recording another file in potentially a
different location without dropping frames. This allows a recording location to be
changed on the fly, allowing you to span recordings across multiple drives or
locations.

17.1.3 OUTPUT SETTINGS

Output from NDI recording is provided onto stdout. The application will place all non-output settings onto stderr

allowing a listening application to distinguish between feedback and notification messages. For example, in the

run log below different colors are used to highlight what is placed on stderr (blue) and stdout (green).

NDI Stream Record v1.00

Copyright (C) 2023 Vizrt NDI AB. All rights reserved.

[14:20:24.138]: <record_started filename="e:\Temp 2.mov" filename_pvw="e:\Temp

2.mov.preview" frame_rate_n="60000" frame_rate_d="1001"/>

[14:20:24.178]: <recording no_frames="0" timecode="732241356791" vu_dB="-23.999269"

start_timecode="732241356791"/>

[14:20:24.209]: <recording no_frames="0" timecode="732241690457" vu_dB="-26.976938"/>

[14:20:24.244]: <recording no_frames="2" timecode="732242024123" vu_dB="-20.638922"/>

[14:20:24.277]: <recording no_frames="4" timecode="732242357789" vu_dB="-20.638922"/>

[14:20:24.309]: <recording no_frames="7" timecode="732242691455" vu_dB="-17.237122"/>

[14:20:24.344]: <recording no_frames="9" timecode="732243025121" vu_dB="-19.268487"/>

...

[14:20:27.696]: <record_stopped no_frames="229" last_timecode="732273722393"/>

Once recording starts it will put out an XML message specifying the filename for the recording, and provide you

with the framerate.

It then gives you the timecode for each recorded frame, and the current audio level in decibels (if the audio is

silent then the dB level will be -inf). If a recording stops it will give you the final timecode written into the file.

Timecodes are specified as UTC time since the Unix Epoch (1/1/1970 00:00) with 100 ns precision.

17.1.4 ERROR HANDLING

A number of different events can cause recording errors. The most common is when the drive system that you are

recording to is too slow to record the video data being stored on it, or the seek times to write multiple streams end

up dominating the performance (note that we do use block writers to avoid this as much as possible).

Page 41 of 51

The recorder is designed to never drop frames in a file; however, when it cannot write to disk sufficiently fast it will

internally “buffer” the compressed video until it has fallen about two seconds behind what can be written to disk.

Thus, temporary disk or connection performance issues do not damage the recording.

Once a true error is detected it will issue a record-error command as follows:

[14:20:24.344]: <record_error error="The error message goes here."/>

If the option for autochop is enabled, the recorder will start attempting to write a new file. This process ensures

that each file always has all frames without drops, but if data needed to be dropped because of insufficient disk

performance, that data will be missing between files.

17.2 NDI DISCOVERY SERVICE

The NDI discovery service is designed to allow you to replace the automatic discovery NDI uses with a server that

operates as a centralized registry of NDI sources.

This can be very helpful for installations where you wish to avoid having significant mDNS traffic for a large number

of sources, or in which multicast is not possible2 or desirable. When using the discovery server, NDI is able to

operate entirely in unicast mode and thus in almost any installation.

The discovery server supports all NDI functionality including NDI groups.

17.2.1 SERVER

Using a discovery server is as simple as running the application in Bin\Utilities\x64\NDI Discovery

Service.exe. This application will then run a server on your local machine that accepts incoming connections with

senders, finders, and receivers, and coordinates amongst them all to ensure they are all visible to each other.

If you wish to bind the discovery server to a single NIC, then you can run it with a command line that specifies the

NIC to be used. For instance:

 "NDI Discovery Service.exe" -bind 196.168.1.100

Note: If you are installing this on a separate machine from the SDK you should ensure that the Visual Studio 2019 C

runtime is installed on that machine, and that the NDI licensing requirements are met.

32-bit and 64-bit versions of the discovery service are available, although the 64-bit version is recommended. The

server will use very little CPU usage although, when there are a very large number of source and connections, it

might require RAM and some network traffic between all sources to coordinate source lists.

Hint: It is, of course, recommended that you have a static IP address so that any clients configured to access it will

not lose connections if the IP is dynamically re-assigned.

2 It is very common that cloud computing services do not allow multicast traffic.

Page 42 of 51

17.2.2 CLIENTS

Clients should be configured to connect with the discovery server instead of using mDNS to locate sources. When

there is a discovery server, the SDK will use both mDNS and the discovery server for finding and receiving so as to

locate sources on the local network that are not on machines configured to use discovery.

For senders, if a discovery service is specified, that mDNS will not be used; these sources will only be visible to

other finders and receivers that are configured to use the discovery server.

17.2.3 CONFIGURATION

In order to configure the discovery server for NDI clients, you may use Access Manager (included in the NDI Tools

bundle) to enter the IP address of the discovery server machine.

To configure the discovery server for NDI clients, you may use Access Manager (included in the NDI Tools bundle)

to enter the IP address of the discovery server machine.

It is possible to run the Discovery server with a command line option that specifies which NIC it is operating from

with:

DiscoveryServer.exe -bind 192.168.1.100

This will ask the discovery server to only advertise on the IP address specified. Likewise, it is possible to specify a

port number that will be used for the discovery server using:

DiscoveryServer.exe -port 5400

This allows you to work on a non-default port number or run multiple discovery servers for multiple groups of

sources on a single machine. If a port of 0 is specified, then a port number is selected by the operating system and

will be displayed at run-time.

17.2.4 REDUNDANCY AND MULTIPLE SERVERS

Within NDI version 5 there is full support for redundant NDI discovery servers. When one configures a discovery

server it is possible to specify a comma delimited list of servers (e.g. “192.168.10.10, 192.168.10.12”) and then

they will all be used simultaneously. If one of these servers then goes down then as long as one remains active

then all sources will remain visible at all times; as long as at least one server remains active then no matter what

the others do then all sources can be seen.

This multiple server capability can also be used to ensure entirely separate servers to allow sources to be broken

into separate groups which can serve many workflow or security needs.

17.3 NDI BENCHMARK

To help gauge your machine performance for NDI, a tool is provided that will initiate one NDI stream per core on

your system and measure how many 1080p streams can be decoded in real time. Note that this number reflects

the best-case performance and is designed to exclude any impact of networking and only gauge the system CPU

performance.

This can be used to compare performance across machines and because NDI is highly optimized on all platforms it

is a good measure of the total CPU performance that is possible when all reasonable opportunity is taken to

achieve high performance on a typical system. For instance, on Windows NDI will use all extended vector

instructions (SSSE3 and up, including VEX instructions) while on ARM it will use NEON instructions when possible.

Page 43 of 51

18 FRAME TYPES

NDI® sending and receiving use common structures to define video, audio, and metadata types. The parameters of

these structures are documented below.

18.1 VIDEO FRAMES (NDILIB_VIDEO_FRAME_V2_T)

Parameter Description

xres, yres (int) This is the resolution of the frame expressed in pixels. Note that, because
data is internally all considered in 4:2:2 formats, image width values
should be divisible by two.

FourCC
(NDIlib_FourCC_video_type_e)

This is the pixel format for this buffer. The supported formats are listed in
the table below.

FourCC Description

NDIlib_FourCC_type_UYVY This is a buffer in the “UYVY” FourCC and represents a 4:2:2 image in YUV
color space. There is a Y sample at every pixel, and U and V sampled at
every second pixel horizontally on each line. A macro-pixel contains 2
pixels in 1 DWORD. The ordering of these pixels is U0, Y0, V0, Y1.

Please see notes below regarding the expected YUV color space for
different resolutions.

Note that when using UYVY video, the color space is maintained end-to-
end through the pipeline, which is consistent with how almost all video is
created and displayed.

NDIlib_FourCC_type_UYVA This is a buffer that represents a 4:2:2:4 image in YUV color space. There
is a Y sample at every pixels with U,V sampled at every second pixel
horizontally. There are two planes in memory, the first being the UYVY
color plane, and the second the alpha plane that immediately follows the
first.

For instance, if you have an image with p_data and stride, then the
planes are located as follows:

uint8_t *p_uyvy = (uint8_t*)p_data;

uint8_t *p_alpha = p_uyvy + stride*yres;

NDIlib_FourCC_type_P216 This is a 4:2:2 buffer in semi-planar format with full 16bpp color
precision. This is formed from two buffers in memory, the first is a 16bpp
luminance buffer and the second is a buffer of U,V pairs in memory. This
can be considered as a 16bpp version of NV12.

For instance, if you have an image with p_data and stride, then the
planes are located as follows:

uint16_t *p_y = (uint16_t*)p_data;

uint16_t *p_uv = (uint16_t*)(p_data + stride*yres);

As a matter of illustration, a completely packed image would have stride
as xres*sizeof(uint16_t).

Page 44 of 51

NDIlib_FourCC_type_PA16 This is a 4:2:2:4 buffer in semi-planar format with full 16bpp color and
alpha precision. This is formed from three buffers in memory. The first is
a 16bpp luminance buffer, and the second is a buffer of U,V pairs in
memory. A single plane alpha channel at 16bpp follows the U,V pairs.

For instance, if you have an image with p_data and stride, then the
planes are located as follows:

uint16_t *p_y = (uint16_t*)p_data;

uint16_t *p_uv = p_y + stride*yres;

uint16_t *p_alpha = p_uv + stride*yres;

To illustrate, a completely packed image would have stride as
xres*sizeof(uint16_t).

NDIlib_FourCC_type_YV12 This is a planar 4:2:0 in Y, U, V planes in memory.

For instance, if you have an image with p_data and stride, then the
planes are located as follows:

uint8_t *p_y = (uint8_t*)p_data;

uint8_t *p_u = p_y + stride*yres;

uint8_t *p_v = p_u + (stride/2)*(yres/2);

As a matter of illustration, a completely packed image would have stride
as xres*sizeof(uint8_t).

NDIlib_FourCC_type_I420 This is a planar 4:2:0 in Y, U, V planes in memory with the U, V planes
reversed from the YV12 format.

For instance, if you have an image with p_data and stride, then the
planes are located as follows:

uint8_t *p_y = (uint8_t*)p_data;

uint8_t *p_v = p_y + stride*yres;

uint8_t *p_u = p_v + (stride/2)*(yres/2);

To illustrate, a completely packed image would have stride as
xres*sizeof(uint8_t).

NDIlib_FourCC_type_NV12 This is a semi planar 4:2:0 in Y, UV planes in memory. The luminance
plane is at the lowest memory address with the UV pairs immediately
following them.

For instance, if you have an image with p_data and stride, then the
planes are located as follows:

uint8_t *p_y = (uint8_t*)p_data;

uint8_t *p_uv = p_y + stride*yres;

To illustrate, a completely packed image would have stride as
xres*sizeof(uint8_t).

NDIlib_FourCC_type_BGRA A 4:4:4:4, 8-bit image of red, green, blue and alpha components, in
memory order blue, green, red, alpha. This data is not pre-multiplied.

Page 45 of 51

NDIlib_FourCC_type_BGRX A 4:4:4, 8-bit image of red, green, blue components, in memory order
blue, green, red, 255. This data is not pre-multiplied.

This is identical to BGRA, but is provided as a hint that all alpha channel
values are 255, meaning that alpha compositing may be avoided. The lack
of an alpha channel is used by the SDK to improve performance when
possible.

NDIlib_FourCC_type_RGBA A 4:4:4:4, 8-bit image of red, green, blue and alpha components, in
memory order red, green, blue, alpha. This data is not pre-multiplied.

NDIlib_FourCC_type_RGBX A 4:4:4, 8-bit image of red, green, blue components, in memory order
red, green, blue, 255. This data is not pre-multiplied.

This is identical to RGBA, but is provided as a hint that all alpha channel
values are 255, meaning that alpha compositing may be avoided. The lack
of an alpha channel is used by the SDK to improve performance when
possible.

When running in a YUV color space, the following standards are applied:

Resolution Standard

SD resolutions BT.601

HD resolutions

xres>720 || yres>576

Rec.709

UHD resolutions

xres>1920 || yres>1080

Rec.2020

Alpha channel Full range for data type
(0-255 range when running 8-bit and 0-65536 range when running 16-bit.)

For the sake of compatibility with standard system components, Windows APIs expose 8-bit UYVY and RGBA video

(common FourCCs used in all media applications).

Parameters (Continued) Description

frame_rate_N, frame_rate_D (int)
This is the framerate of the current frame. The framerate is specified as

a numerator and denominator, such that the following is valid:

frame_rate = (float)frame_rate_N / (float)frame_rate_D

Some examples of common framerates are presented in the table

below.

Standard Framerate ratio Framerate

NTSC 1080i59.94 30000 / 1001 29.97 Hz

Page 46 of 51

NTSC 720p59.94 60000 / 1001 59.94 Hz

PAL 1080i50 30000 / 1200 25 Hz

PAL 720p50 60000 / 1200 50 Hz

NTSC 24fps 24000 / 1001 23.98 Hz

Parameters (Continued) Description

picture_aspect_ratio (float)
The SDK defines picture aspect ratio (as opposed to pixel aspect

ratios). Some common aspect ratios are presented in the table

below. When the aspect ratio is 0.0 it is interpreted as xres/yres,

or square pixel; for most modern video types this is a default that

can be used.

Aspect Ratio Calculated as image_aspect_ratio

4:3 4.0/3.0 1.333...

16:9 16.0/9.0 1.667...

16:10 16.0/10.0 1.6

Parameters (Continued) Description

frame_format_type
(NDIlib_frame_format_type_e)

This is used to determine the frame type. Possible values are

listed in the next table.

Value Description

NDIlib_frame_format_type_progressive This is a progressive video frame

NDIlib_frame_format_type_interleaved This is a frame of video that is comprised of two
fields. The upper field comes first, and the lower
comes second (see note below)

NDIlib_frame_format_type_field_0 This is an individual field 0 from a fielded video
frame. This is the first temporal, upper field (see
note below).

NDIlib_frame_format_type_field_1 This is an individual field 1 from a fielded video
frame. This is the second temporal, lower field (see
note below).

To make everything as easy to use as possible, the SDK always assumes that fields are ‘top field first’.

This is, in fact, the case for every modern format, but does create a problem for two specific older video formats as

discussed below:

Page 47 of 51

18.1.1.1 NTSC 486 LINES

The best way to handle this format is simply to offset the image vertically by one line (p_uyvy_data +

uyvy_stride_in_bytes) and reduce the vertical resolution to 480 lines. This can all be done without modification

of the data being passed in at all; simply change the data and resolution pointers.

18.1.1.2 DV NTSC

This format is a relatively rare these days, although still used from time to time. There is no entirely trivial way to

handle this other than to move the image down one line and add a black line at the bottom.

Parameters (Continued) Description

timecode (int64_t, 64-bit signed
integer)

This is the timecode of this frame in 100 ns intervals. This is generally not

used internally by the SDK but is passed through to applications, which may

interpret it as they wish. When sending data, a value of

NDIlib_send_timecode_synthesize can be specified (and should be the

default). The operation of this value is documented in the sending section

of this documentation.

p_data (const uint8_t*)

This is the video data itself laid out linearly in memory in the FourCC format

defined above. The number of bytes defined between lines is specified in

line_stride_in_bytes. No specific alignment requirements are needed,

although larger data alignments might result in higher performance (and the

internal SDK codecs will take advantage of this where needed).

line_stride_in_bytes (int)
This is the inter-line stride of the video data, in bytes.

p_metadata (const char*)
This is a per frame metadata stream that should be in UTF-8 formatted XML

and NULL-terminated. It is sent and received with the frame.

timestamp (int64_t, 64-bit
signed integer)

This is a per-frame timestamp filled in by the NDI SDK using a high precision

clock. It represents the time (in 100 ns intervals measured in UTC time,

since the Unix Time Epoch 1/1/1970 00:00) when the frame was submitted

to the SDK.

On modern sender systems this will have ~1 μs accuracy; this can be used to

synchronize streams on the same connection, between connections, and

between machines. For inter-machine synchronization, it is important to use

external clock locking capability with high precision (such as NTP).

18.2 AUDIO FRAMES (NDILIB_AUDIO_FRAME_V3_T)

NDI Audio is passed to the SDK in floating-point and has a dynamic range without practical limits (without clipping).

To define how floating-point values map into real-world audio levels, a sinewave that is 2.0 floating-point units

peak-to-peak (i.e., -1.0 to +1.0) is assumed to represent an audio level of +4 dBU, corresponding to a nominal level

of 1.228 V RMS.

Page 48 of 51

Two tables are provided below that explain the relationship between NDI audio values for the SMPTE and EBU

audio standards.

In general, we strongly recommend that you take advantage of the NDI tools “Pattern Generator” and “Studio

Monitor”, which provide proper audio calibration for different audio standards, to verify that your implementation

is correct.

SMPTE AUDIO LEVELS Reference Level

NDI 0.0 0.063 0.1 0.63 1.0 10.0

dBu -∞ -20 dB -16 dB +0 dB +4 dB +24 dB

dBVU -∞ -24 dB -20 dB -4 dB +0 dB +20 dB

SMPTE dBFS -∞ -44 dB -40 dB -24 dB -20 dB +0 dB

If you want a simple ‘recipe’ that matches SDI audio levels based on the SMPTE audio standard, you will want to

have 20 dB of headroom above the SMPTE reference level at +4 dBu, which is at +0 dBVU, to correspond to a level

of 1.0 in NDI floating-point audio. Conversion from floating-point to integer audio would thus be performed with:

int smpte_sample_16bit = max(-32768, min(32767, (int)(3276.8f*smpte_sample_fp)));

EBU AUDIO LEVELS Reference Level

NDI 0.0 0.063 0.1 0.63 1.0 5.01

dBu -∞ -20 dB -16 dB +0 dB +4 dB +18 dB

dBVU -∞ -24 dB -20 dB -4 dB +0 dB +14 dB

EBU dBFS -∞ -38 dB -34 dB -18 dB -14 dB +0 dB

If you want a simple ‘recipe’ that matches SDI audio levels based on the EBU audio standard, you will want to have

18 dB of headroom above the EBU reference level at 0 dBu (i.e., 14 dB above the SMPTE/NDI reference level).

Conversion from floating-point to integer audio would thus be performed with:

int ebu_sample_16bit = max(-32768, min(32767, (int)(6540.52f*ebu_sample_fp)));

Because many applications provide interleaved 16-bit audio, the NDI library includes utility functions that will

convert in and out of floating-point formats from PCM 16-bit formats.

There is also a utility function for sending signed 16-bit audio using NDIlib_util_send_send_audio_interleaved_16s.

Please refer to the example projects, and the header file Processing.NDI.utilities.h, which lists the available

functions.

In general, we recommend the use of floating-point audio since clamping is not possible, and audio levels are well

defined without a need to consider audio headroom.

The audio sample structure is defined as described below.

Parameter Description

sample_rate (int) This is the current audio sample rate. For instance, this might be 44100,
48000 or 96000. It can, however, be any value.

no_channels (int) This is the number of discrete audio channels. 1 represents MONO audio, 2
represents STEREO, and so on. There is no reasonable limit on the number
of allowed audio channels.

Page 49 of 51

no_samples (int) This is the number of audio samples in this buffer. Any number and will be
handled correctly by the NDI SDK. However, when sending audio and video
together, please bear in mind that many audio devices work better with
audio buffers of the same approximate length as the video framerate.

We encourage sending audio buffers that are approximately half the length
of the video frames, and that receiving devices support buffer lengths as
broadly as they reasonably can.

timecode (int64_t, 64-bit signed
integer)

This is the timecode of this frame in 100 ns intervals. This is generally not
used internally by the SDK but is passed through to applications who may
interpret it as they wish. When sending data, a value of
NDIlib_send_timecode_synthesize can be specified (and should be the
default), the operation of this value is documented in the sending section of
this documentation.

NDIlib_send_timecode_synthesize will yield UTC time in 100 ns intervals
since the Unix Time Epoch 1/1/1970 00:00. When interpreting this
timecode, a receiving application may choose to localize the time of day
based on time zone offset, which can optionally be communicated by the
sender in connection metadata.

Since timecode is stored in UTC within NDI, communicating timecode time
of day for non-UTC time zones requires a translation.

FourCC
(NDIlib_FourCC_audio_type_e)

This is the sample format for this buffer. There is currently one supported
format: NDIlib_FourCC_type_FLTP. This format stands for floating-point
audio.

p_data (uint8_t*) If FourCC is NDIlib_FourCC_type_FLTP, then this is the floating-point audio
data in planar format, with each audio channel stored together with a stride
between channels specified by channel_stride_in_bytes.

channel_stride_in_bytes (int) This is the number of bytes that are used to step from one audio channel to
another.

p_metadata (const char*) This is a per frame metadata stream that should be in UTF-8 formatted XML
and NULL-terminated. It is sent and received with the frame.

timestamp (int64_t, 64-bit
signed integer)

This is a per-frame timestamp filled in by the NDI SDK using a high precision
clock. It represents the time (in 100 ns intervals measured in UTC time since
the Unix Time Epoch 1/1/1970 00:00) when the frame was submitted to the
SDK.

On modern sender systems this will have ~1 μs accuracy and can be used to
synchronize streams on the same connection, between connections and
between machines.

For inter-machine synchronization it is important that some external clock
locking capability with high precision is used, such as NTP.

18.3 METADATA FRAMES (NDILIB_METADATA_FRAME_T)

Meta data is specified as NULL-terminated, UTF-8 XML data. The reason for this choice is so the format can

naturally be extended by anyone using it to represent data of any type and length.

Page 50 of 51

XML is also naturally backwards and forwards compatible, because any implementation would happily ignore tags

or parameters that are not understood (which, in turn, means that devices should naturally work with each other

without requiring a rigid set of data parsing and standard complex data structures).

Parameter Description

length (int) This is the length of the metadata message in bytes. It includes the NULL-
terminating character. If this is zero, then the length will be derived from
the string length automatically.

p_data (char*) This is the XML message data.

timecode (int64_t, 64-bit signed
integer)

This is the timecode of this frame in 100 ns intervals. It is generally not
used internally by the SDK but is passed through to applications who may
interpret it as they wish.

When sending data, a value of NDIlib_send_timecode_synthesize can be
specified (and should be the default); the operation of this value is
documented in the sending section of this documentation.

If you wish to put your own vendor specific metadata into fields, please use XML namespaces. The “NDI” XML

namespace is reserved.

Note: It is very important that you compose legal XML messages for sending. (On receiving metadata, it is

important that you support badly formed XML in case a sender did send something incorrect.)

If you want specific metadata flags to be standardized, please contact us.

19 WINDOWS DIRECTSHOW FILTER

The windows version of the NDI® SDK includes a DirectShow audio and video filter. This is particularly useful for

people wishing to build simple tools and integrate NDI video into WPF applications.

Both x86 and x64 versions of this filter are included in the SDK. If you wish to use them, you must first register

those filters using regsvr32. The SDK install will register these filters for you. The redistributable NDI installer will

also install and register these filters and can be downloaded by users from http://ndi.link/NDIRedistV5. You may

of course include the filters in your own application installers under the terms of the NDI license agreement.

Once the filter is registered, you can instantiate it by using the GUID:

DEFINE_GUID(CLSID_NdiSourceFilter, 0x90f86efc, 0x87cf, 0x4097,

 0x9f, 0xce, 0xc, 0x11, 0xd5, 0x73, 0xff, 0x8f);

The filter name is “NDI Source”. The filter presents audio and video pins you may connect to. Audio is supported

in floating-point and 16-bit, and video is supported in UYVY and BGRA.

The filter can be added to a graph and will respond to the IFileSourceFilter interface. This takes “filenames” in the

form ndi://computername/source. This will connect to the “source” on a particular “computer name“. For

instance, to connect to an NDI source called “MyComputer (Video 1)” you must escape the characters and use the

following URL: ndi://MyComputer/Video+1

To receive just the video stream, use the audio=false option, as follows:

NDI://computername/source?audio=false

Use the video=false option to receive just the audio stream, as in the example below:

http://ndi.link/NDIRedistV5

Page 51 of 51

NDI://computername/source?video=false

Additional options may be specified using the standard method to add to URLs, as for example:

NDI://computername/source?low_quality=true

NDI://computername/source?audio=false&low_quality=true&force_aspect=1.33333&rgb=true

20 3R D PARTY RIGHTS

The NDI® libraries make minor use of other third-party libraries, for which we are very grateful to the authors. If

you are distributing NDI DLLs yourself, it is important that your distribution is compliant with the licenses for these

third-party libraries. For the sake of convenience, we have combined these licenses within a single file that you

should include, Processing.NDI.Lib.Licenses.txt, which is included beside the NDI binary files.

21 SUPPORT

Like other areas of the NDI® SDK, if you have any problems, please sign up on our NDI support hub at

https://ndi.video/ndiplusdevhub and we will do our best to support you.

https://ndi.video/ndiplusdevhub

	1 Overview
	1.1 NDI Background

	2 SDK Changes
	3 Licensing
	4 Software Distribution
	4.1 Header files. (NDI_SDK_DIR\Include*.h)
	4.2 Binary files (NDI_SDK_DIR\Bin*.*)
	4.3 Redistributables (NDI_SDK_DIR\Redist*.exe)
	4.4 Content Files (NDI_SDK_DIR\LOGOS*.*)
	4.5 Libraries
	4.5.1 NDI-Send
	4.5.2 NDI-Find
	4.5.3 NDI-Receive

	4.6 Utilities
	4.7 Command line tools

	5 CPU Requirements
	6 Dynamic Loading of NDI Libraries
	6.1 Locating the Library
	6.2 Recovering the Function Pointers
	6.3 Calling NDI functions

	7 Performance and Implementation
	7.1 Upgrading Your Applications
	7.2 General Recommendations
	7.3 Sending Video
	7.4 Receiving VIdeo
	7.5 Reliable UDP With Multi-Stream Congestion Control
	7.6 Multicast
	7.6.1 Debugging with multicast

	8 Startup and Shutdown
	9 Example Code
	10 Port Numbers
	11 Configuration Files
	12 Platform Considerations
	12.1 Windows
	12.2 Windows UWP
	12.3 macOS
	12.4 Android
	12.5 iOS
	12.6 Linux

	13 NDI-Send
	13.1 Asynchronous Sending
	13.2 Timecode synthesis
	13.3 Failsafe
	13.4 Capabilities
	13.5 Apple iOS Notes

	14 NDI-Find
	15 NDI-Recv
	15.1 Receiver User interfaces
	15.2 Receiver PTZ Control
	15.2.1 PTZ Control
	15.2.1.1 Zoom Level
	15.2.1.2 Zoom Speed
	15.2.1.3 Pan and Tilt
	15.2.1.4 Presets
	15.2.1.5 Focus
	15.2.1.6 White Balance
	15.2.1.7 Exposure Control

	15.3 Receivers and Tally Messages
	15.4 Frame Synchronization

	16 NDI-Routing
	17 Command Line Tools
	17.1 Recording
	17.1.1 Command Line Arguments
	17.1.2 Input Settings
	17.1.3 Output Settings
	17.1.4 Error Handling

	17.2 NDI Discovery Service
	17.2.1 Server
	17.2.2 Clients
	17.2.3 Configuration
	17.2.4 Redundancy and multiple servers

	17.3 NDI Benchmark

	18 Frame Types
	18.1 Video Frames (NDIlib_video_frame_v2_t)
	18.1.1.1 NTSC 486 lines
	18.1.1.2 DV NTSC

	18.2 Audio Frames (NDIlib_audio_frame_v3_t)
	18.3 Metadata Frames (NDIlib_metadata_frame_t)

	19 Windows DirectShow Filter
	20 3rd Party Rights
	21 Support

